Skip to main content
Genetics logoLink to Genetics
. 1988 Jul;119(3):595–607. doi: 10.1093/genetics/119.3.595

Variation among Extracted Lines of Drosophila Melanogaster in Triacylglycerol and Carbohydrate Storage

A G Clark 1, L E Keith 1
PMCID: PMC1203445  PMID: 3136052

Abstract

Whole larvae and whole adult extracts from 26 second chromosome replacement lines of Drosophila melanogaster were analyzed to determine the amounts of stored triacylglycerols and carbohydrates as well as the activities of 13 enzymes in relevant biochemical pathways. Analysis of covariance revealed significant differences among lines in stored lipids and carbohydrates, as well as in activities of most of the enzymes. Significant broad-sense genetic correlations (among adjusted line means) were detected for a number of enzyme pairs. Multiple regression techniques were applied to assess the extent to which the amounts of stored triacylglycerols and carbohydrates could be predicted from the enzyme activities. Significant regressions were found in both adults and larvae, suggesting that modulation of enzyme activities is reflected in different sizes of storage pools. The population genetic consequences of natural selection acting on a phenotype such as energy storage is considered in light of models of metabolic flux in biochemical pathways.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASAHINA E., TANNO K. A LARGE AMOUNT OF TREHALOSE IN A FROST-RESISTANT INSECT. Nature. 1964 Dec 19;204:1222–1222. doi: 10.1038/2041222a0. [DOI] [PubMed] [Google Scholar]
  2. Barnes P. T., Laurie-Ahlberg C. C. Genetic variability of flight metabolism in Drosophila melanogaster. III. Effects of Gpdh allozymes and environmental temperature on power output. Genetics. 1986 Feb;112(2):267–294. doi: 10.1093/genetics/112.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beenakkers A. M. Carbohydrate and fat as a fuel for insect flight. A comparative study. J Insect Physiol. 1969 Mar;15(3):353–361. doi: 10.1016/0022-1910(69)90281-9. [DOI] [PubMed] [Google Scholar]
  4. Bijlsma R. Polymorphism at the G6pd and 6Pgd loci in Drosophila melanogaster. IV. Genetic factors modifying enzyme activity. Biochem Genet. 1980 Aug;18(7-8):699–715. doi: 10.1007/BF00484587. [DOI] [PubMed] [Google Scholar]
  5. Bucolo G., David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem. 1973 May;19(5):476–482. [PubMed] [Google Scholar]
  6. Burton R. S., La Spada A. Trehalase polymorphism in Drosophila melanogaster. Biochem Genet. 1986 Oct;24(9-10):715–719. doi: 10.1007/BF00499004. [DOI] [PubMed] [Google Scholar]
  7. Burton R. S., Place A. R. Evolution of selective neutrality: further considerations. Genetics. 1986 Nov;114(3):1033–1039. doi: 10.1093/genetics/114.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cavener D. R., Clegg M. T. Evidence for biochemical and physiological differences between enzyme genotypes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4444–4447. doi: 10.1073/pnas.78.7.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark A. G. Natural selection with nuclear and cytoplasmic transmission. II. Tests with Drosophila from diverse populations. Genetics. 1985 Sep;111(1):97–112. doi: 10.1093/genetics/111.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Connors E. M., Curtsinger J. W. Relationship between alpha-glycerophosphate dehydrogenase activity and metabolic rate during flight in Drosophila melanogaster. Biochem Genet. 1986 Apr;24(3-4):245–257. doi: 10.1007/BF00502792. [DOI] [PubMed] [Google Scholar]
  11. De Jong G., Scharloo W. Environmental determination of selective significance or neutrality of amylase variants in Drosophila melanogaster. Genetics. 1976 Sep;84(1):77–94. doi: 10.1093/genetics/84.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dykhuizen D. E., Dean A. M., Hartl D. L. Metabolic flux and fitness. Genetics. 1987 Jan;115(1):25–31. doi: 10.1093/genetics/115.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eanes W. F., Bingham B., Hey J., Houle D. Targeted selection experiments and enzyme polymorphism: negative evidence for octanoate selection at the G6PD locus in Drosophila melanogaster. Genetics. 1985 Feb;109(2):379–391. doi: 10.1093/genetics/109.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geer B. W., Bowman J. T., Simmons J. R. The pentose shunt in wild-type and glucose-6-phosphate dehydrogenase deficient Drosophila melanogaster. J Exp Zool. 1974 Jan;187(1):77–86. doi: 10.1002/jez.1401870110. [DOI] [PubMed] [Google Scholar]
  15. Geer B. W., Langevin M. L., McKechnie S. W. Dietary ethanol and lipid synthesis in Drosophila melanogaster. Biochem Genet. 1985 Aug;23(7-8):607–622. doi: 10.1007/BF00504295. [DOI] [PubMed] [Google Scholar]
  16. Geer B. W., Laurie-Ahlberg C. C. Genetic variation in the dietary sucrose modulation of enzyme activities in Drosophila melanogaster. Genet Res. 1984 Jun;43(3):307–321. doi: 10.1017/s0016672300026094. [DOI] [PubMed] [Google Scholar]
  17. Heinrich R., Rapoport S. M. The utility of mathematical models for the understanding of metabolic systems. Biochem Soc Trans. 1983 Jan;11(1):31–35. doi: 10.1042/bst0110031. [DOI] [PubMed] [Google Scholar]
  18. Kacser H., Burns J. A. MOlecular democracy: who shares the controls? Biochem Soc Trans. 1979 Oct;7(5):1149–1160. doi: 10.1042/bst0071149. [DOI] [PubMed] [Google Scholar]
  19. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  20. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lande R. The Genetic Covariance between Characters Maintained by Pleiotropic Mutations. Genetics. 1980 Jan;94(1):203–215. doi: 10.1093/genetics/94.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laurie-Ahlberg C. C., Barnes P. T., Curtsinger J. W., Emigh T. H., Karlin B., Morris R., Norman R. A., Wilton A. N. Genetic variability of flight metabolism in Drosophila melanogaster. II. Relationship between power output and enzyme activity levels. Genetics. 1985 Dec;111(4):845–868. doi: 10.1093/genetics/111.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laurie-Ahlberg C. C., Maroni G., Bewley G. C., Lucchesi J. C., Weir B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. doi: 10.1073/pnas.77.2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Laurie-Ahlberg C. C., Wilton A. N., Curtsinger J. W., Emigh T. H. Naturally occurring enzyme activity variation in Drosophila melanogaster. I. Sources of variation for 23 enzymes. Genetics. 1982 Oct;102(2):191–206. doi: 10.1093/genetics/102.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Middleton R. J., Kacser H. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1983 Nov;105(3):633–650. doi: 10.1093/genetics/105.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miyashita N., Laurie-Ahlberg C. C. Developmental variation in effects of the second and third chromosomes on the activities of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases in Drosophila melanogaster. Biochem Genet. 1986 Jun;24(5-6):447–467. doi: 10.1007/BF00499099. [DOI] [PubMed] [Google Scholar]
  28. Miyashita N., Laurie-Ahlberg C. C. Genetical analysis of chromosomal interaction effects on the activities of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases in Drosophila melanogaster. Genetics. 1984 Apr;106(4):655–668. doi: 10.1093/genetics/106.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Powers D. A., DiMichele L., Place A. R. The use of enzyme kinetics to predict differences in cellular metabolism, developmental rate, and swimming performance between LDH-B genotypes of the fish, fundulus heteroclitus. Isozymes Curr Top Biol Med Res. 1983;10:147–170. [PubMed] [Google Scholar]
  30. RAABO E., TERKILDSEN T. C. On the enzymatic determination of blood glucose. Scand J Clin Lab Invest. 1960;12(4):402–407. doi: 10.3109/00365516009065404. [DOI] [PubMed] [Google Scholar]
  31. Roe J. H., Dailey R. E. Determination of glycogen with the anthrone reagent. Anal Biochem. 1966 May;15(2):245–250. doi: 10.1016/0003-2697(66)90028-5. [DOI] [PubMed] [Google Scholar]
  32. Teague B. D., Clark A. G., Doane W. W. Developmental analysis of lipids from wild-type and adipose60 mutants of Drosophila melanogaster. J Exp Zool. 1986 Oct;240(1):95–104. doi: 10.1002/jez.1402400112. [DOI] [PubMed] [Google Scholar]
  33. Watt W. B. Adaptation at Specific Loci. II. Demographic and Biochemical Elements in the Maintenance of the Colias Pgi Polymorphism. Genetics. 1983 Apr;103(4):691–724. doi: 10.1093/genetics/103.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Watt W. B., Carter P. A., Blower S. M. Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics. 1985 Jan;109(1):157–175. doi: 10.1093/genetics/109.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watt W. B., Cassin R. C., Swan M. S. Adaptation at Specific Loci. III. Field Behavior and Survivorship Differences among Colias Pgi Genotypes Are Predictable from IN VITRO Biochemistry. Genetics. 1983 Apr;103(4):725–739. doi: 10.1093/genetics/103.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Westerhoff H. V., Groen A. K., Wanders R. J. Modern theories of metabolic control and their applications (review). Biosci Rep. 1984 Jan;4(1):1–22. doi: 10.1007/BF01120819. [DOI] [PubMed] [Google Scholar]
  37. Wilton A. N., Laurie-Ahlberg C. C., Emigh T. H., Curtsinger J. W. Naturally occurring enzyme activity variation in Drosophila melanogaster. II. Relationships among enzymes. Genetics. 1982 Oct;102(2):207–221. doi: 10.1093/genetics/102.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES