Skip to main content
Genetics logoLink to Genetics
. 1988 Jul;119(3):679–685. doi: 10.1093/genetics/119.3.679

A Sex Chromosomal Restriction-Fragment-Length Marker Linked to Melanoma-Determining Tu Loci in Xiphophorus

M Schartl 1
PMCID: PMC1203452  PMID: 2841190

Abstract

In Xiphophorus, the causative genetic information for melanoma formation has been assigned by classical genetics to chromosomal loci, which are located on the sex chromosomes. In our attempts to molecularly clone these melanoma-determining loci, named Tu, we have looked for restriction-fragment-length markers (RFLMs) linked to the Tu loci. These RFLMs should be useful in obtaining a physical map of a Tu locus, which will aid in the cloning of the corresponding sequences. DNA samples from various Xiphophorus strains and hybrids including those bearing different Tu wild-type, deletion and translocation chromosomes, were screened for the presence of random RFLMs using homologous or heterologous sequences as hybridization probes. We find an EcoRI restriction fragment which shows limited crosshybridization to the v-erb B gene--but not representing the authentic c-erb B gene of Xiphophorus--to be polymorphic with respect to different sex chromosomes. Linkage analysis revealed that a 5-kb fragment is linked to the Tu-Sd locus on the X chromosome, a 7-kb fragment is linked to the Tu-Sr locus on the Y chromosome, both of Xiphophorus maculatus, and that a 12-kb fragment is linked to the Tu-Li locus on the X chromosome of Xiphophorus variatus. Using different chromosomal mutants this RFLM has been mapped to a frequent deletion/translocation breakpoint of the X chromosome, less than 0.3 cM apart from the Tu locus.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahuja M. R., Lepper K., Anders F. Sex chromosome aberrations involving loss and translocation of tumor-inducing loci in Xiphophorus. Experientia. 1979 Jan 15;35(1):28–30. doi: 10.1007/BF01917856. [DOI] [PubMed] [Google Scholar]
  2. Anders F., Schartl M., Barnekow A., Anders A. Xiphophorus as an in vivo model for studies on normal and defective control of oncogenes. Adv Cancer Res. 1984;42:191–275. doi: 10.1016/s0065-230x(08)60459-5. [DOI] [PubMed] [Google Scholar]
  3. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friend S. H., Bernards R., Rogelj S., Weinberg R. A., Rapaport J. M., Albert D. M., Dryja T. P. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986 Oct 16;323(6089):643–646. doi: 10.1038/323643a0. [DOI] [PubMed] [Google Scholar]
  5. GORDON M. A genetic concept for the origin of melanomas. Ann N Y Acad Sci. 1958 Sep 30;71(6):1213–1222. doi: 10.1111/j.1749-6632.1958.tb46837.x. [DOI] [PubMed] [Google Scholar]
  6. Klein G., Klein E. Evolution of tumours and the impact of molecular oncology. Nature. 1985 May 16;315(6016):190–195. doi: 10.1038/315190a0. [DOI] [PubMed] [Google Scholar]
  7. Knudson A. G., Jr Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 1985 Apr;45(4):1437–1443. [PubMed] [Google Scholar]
  8. Land H., Parada L. F., Weinberg R. A. Cellular oncogenes and multistep carcinogenesis. Science. 1983 Nov 18;222(4625):771–778. doi: 10.1126/science.6356358. [DOI] [PubMed] [Google Scholar]
  9. Monaco A. P., Neve R. L., Colletti-Feener C., Bertelson C. J., Kurnit D. M., Kunkel L. M. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature. 1986 Oct 16;323(6089):646–650. doi: 10.1038/323646a0. [DOI] [PubMed] [Google Scholar]
  10. Royer-Pokora B., Kunkel L. M., Monaco A. P., Goff S. C., Newburger P. E., Baehner R. L., Cole F. S., Curnutte J. T., Orkin S. H. Cloning the gene for an inherited human disorder--chronic granulomatous disease--on the basis of its chromosomal location. Nature. 1986 Jul 3;322(6074):32–38. doi: 10.1038/322032a0. [DOI] [PubMed] [Google Scholar]
  11. Schartl M., Mäueler W., Raulf F., Robertson S. M. Molecular aspects of melanoma formation in Xiphophorus. Prog Clin Biol Res. 1988;256:283–296. [PubMed] [Google Scholar]
  12. Schartl M., Schmidt C. R., Anders A., Barnekow A. Elevated expression of the cellular src gene in tumors of differing etiologies in Xiphophorus. Int J Cancer. 1985 Aug 15;36(2):199–207. doi: 10.1002/ijc.2910360212. [DOI] [PubMed] [Google Scholar]
  13. Vennström B., Fanshier L., Moscovici C., Bishop J. M. Molecular cloning of the avian erythroblastosis virus genome and recovery of oncogenic virus by transfection of chicken cells. J Virol. 1980 Nov;36(2):575–585. doi: 10.1128/jvi.36.2.575-585.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vielkind J., Haas-Andela H., Vielkind U., Anders F. The induction of a specific pigment cell type by total genomic DNA injected into the neural crest region of fish embryos of the genus Xiphophorus. Mol Gen Genet. 1982;185(3):379–389. doi: 10.1007/BF00334128. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES