Skip to main content
Genetics logoLink to Genetics
. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875

The Rosy Region of Drosophila Melanogaster and Drosophila Simulans. I. Contrasting Levels of Naturally Occurring DNA Restriction Map Variation and Divergence

C F Aquadro 1, K M Lado 1, W A Noon 1
PMCID: PMC1203471  PMID: 2900794

Abstract

A 40-kb region around the rosy and snake loci was analyzed for restriction map variation among 60 lines of Drosophila melanogaster and 30 lines of Drosophila simulans collected together at a single locality in Raleigh, North Carolina. DNA sequence variation in D. simulans was estimated to be 6.3 times greater than in D. melanogaster (heterozygosities per nucleotide of 1.9% vs. 0.3%). This result stands in marked contrast to results of studies of phenotypic variation including proteins (allozymes), morphology and chromosome arrangements which are generally less variable and less geographically differentiated in D. simulans. Intraspecific polymorphism is not distributed uniformly over the 40-kb region. The level of heterozygosity per nucleotide varies more than 12-fold across the region in D. simulans, being highest over the hsc2 gene. Similar, though less extreme, variation in heterozygosity is also observed in D. melanogaster. Average interspecific divergence (corrected for intraspecific polymorphism) averaged 3.8%. The pattern of interspecific divergence over the 40-kb region shows some disparities with the spatial distribution of intraspecific variation, but is generally consistent with selective neutrality predictions: the most polymorphic regions within species are generally the most divergent between species. Sequence-length polymorphism is observed for D. melanogaster to be at levels comparable to other gene regions in this species. In contrast, no sequence length variation was observed among D. simulans chromosomes (limit of resolution approximately 100 bp). These data indicate that transposable elements play at best a minor role in the generation of naturally occurring genetic variation in D. simulans compared to D. melanogaster. We hypothesize that differences in species effective population size are the major determinant of the contrasting levels and patterns of DNA sequence and insertion/deletion variation that we report here and the patterns of allozyme and morphological variation and differentiation reported by other workers for these two species.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquadro C. F., Desse S. F., Bland M. M., Langley C. H., Laurie-Ahlberg C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics. 1986 Dec;114(4):1165–1190. doi: 10.1093/genetics/114.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashburner M., Lemeunier F. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora) i. inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proc R Soc Lond B Biol Sci. 1976 Apr 13;193(1111):137–157. doi: 10.1098/rspb.1976.0036. [DOI] [PubMed] [Google Scholar]
  3. Bender W., Spierer P., Hogness D. S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983 Jul 25;168(1):17–33. doi: 10.1016/s0022-2836(83)80320-9. [DOI] [PubMed] [Google Scholar]
  4. Berger E. M. A comparison of gene-enzyme variation between Drosophila melanogaster and D. simulans. Genetics. 1970 Dec;66(4):677–683. doi: 10.1093/genetics/66.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bingham P. M., Kidwell M. G., Rubin G. M. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell. 1982 Jul;29(3):995–1004. doi: 10.1016/0092-8674(82)90463-9. [DOI] [PubMed] [Google Scholar]
  6. Bossy B., Hall L. M., Spierer P. Genetic activity along 315 kb of the Drosophila chromosome. EMBO J. 1984 Nov;3(11):2537–2541. doi: 10.1002/j.1460-2075.1984.tb02169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choudhary M., Singh R. S. Historical effective size and the level of genetic diversity in Drosophila melanogaster and Drosophila pseudoobscura. Biochem Genet. 1987 Feb;25(1-2):41–51. doi: 10.1007/BF00498950. [DOI] [PubMed] [Google Scholar]
  8. Cohn V. H., Thompson M. A., Moore G. P. Nucleotide sequence comparison of the Adh gene in three drosophilids. J Mol Evol. 1984;20(1):31–37. doi: 10.1007/BF02101983. [DOI] [PubMed] [Google Scholar]
  9. Craig E. A., Ingolia T. D., Manseau L. J. Expression of Drosophila heat-shock cognate genes during heat shock and development. Dev Biol. 1983 Oct;99(2):418–426. doi: 10.1016/0012-1606(83)90291-9. [DOI] [PubMed] [Google Scholar]
  10. Cross S. R., Birley A. J. Restriction endonuclease map variation in the Adh region in populations of Drosophila melanogaster. Biochem Genet. 1986 Jun;24(5-6):415–433. doi: 10.1007/BF00499097. [DOI] [PubMed] [Google Scholar]
  11. Davis P. S., Shen M. W., Judd B. H. Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc Natl Acad Sci U S A. 1987 Jan;84(1):174–178. doi: 10.1073/pnas.84.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeLotto R., Spierer P. A gene required for the specification of dorsal-ventral pattern in Drosophila appears to encode a serine protease. Nature. 1986 Oct 23;323(6090):688–692. doi: 10.1038/323688a0. [DOI] [PubMed] [Google Scholar]
  13. Dowsett A. P., Young M. W. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4570–4574. doi: 10.1073/pnas.79.15.4570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edwards T. C., Candido E. P., Chovnick A. Xanthine dehydrogenase from Drosophila melanogaster: a comparison of the kinetic parameters of the pure enzyme from two wild-type isoalleles differing at a putative regulatory site. Mol Gen Genet. 1977 Jul 7;154(1):1–6. doi: 10.1007/BF00265570. [DOI] [PubMed] [Google Scholar]
  15. Engels W. R. The P family of transposable elements in Drosophila. Annu Rev Genet. 1983;17:315–344. doi: 10.1146/annurev.ge.17.120183.001531. [DOI] [PubMed] [Google Scholar]
  16. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  17. Gausz J., Hall L. M., Spierer A., Spierer P. Molecular Genetics of the ROSY-ACE Region of DROSOPHILA MELANOGASTER. Genetics. 1986 Jan;112(1):65–78. doi: 10.1093/genetics/112.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gelbart W. M., McCarron M., Pandey J., Chovnick A. Genetic limits of the xanthine dehydrogenase structural element within the rosy locus in Drosophila melanogaster. Genetics. 1974 Nov;78(3):869–886. doi: 10.1093/genetics/78.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldberg M. L., Sheen J. Y., Gehring W. J., Green M. M. Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5017–5021. doi: 10.1073/pnas.80.16.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Golding G. B., Aquadro C. F., Langley C. H. Sequence evolution within populations under multiple types of mutation. Proc Natl Acad Sci U S A. 1986 Jan;83(2):427–431. doi: 10.1073/pnas.83.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hale L. R., Singh R. S. Mitochondrial DNA variation and genetic structure in populations of Drosophila melanogaster. Mol Biol Evol. 1987 Nov;4(6):622–637. doi: 10.1093/oxfordjournals.molbev.a040466. [DOI] [PubMed] [Google Scholar]
  22. Hilliker A. J., Clark S. H., Chovnick A., Gelbart W. M. Cytogenetic analysis of the chromosomal region immediately adjacent to the rosy locus in Drosophila melanogaster. Genetics. 1980 May;95(1):95–110. doi: 10.1093/genetics/95.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hyytia P., Capy P., David J. R., Singh R. S. Enzymatic and quantitative variation in European and African populations of Drosophila simulans. Heredity (Edinb) 1985 Apr;54(Pt 2):209–217. doi: 10.1038/hdy.1985.28. [DOI] [PubMed] [Google Scholar]
  24. Inoue Y H, Yamamoto M T. Insertional DNA and spontaneous mutation at the white locus in Drosophila simulans. Mol Gen Genet. 1987 Aug;209(1):94–100. doi: 10.1007/BF00329842. [DOI] [PubMed] [Google Scholar]
  25. Keith T. P., Riley M. A., Kreitman M., Lewontin R. C., Curtis D., Chambers G. Sequence of the structural gene for xanthine dehydrogenase (rosy locus) in Drosophila melanogaster. Genetics. 1987 May;116(1):67–73. doi: 10.1093/genetics/116.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kidd S., Young M. W. Transposon-dependent mutant phenotypes at the Notch locus of Drosophila. Nature. 1986 Sep 4;323(6083):89–91. doi: 10.1038/323089a0. [DOI] [PubMed] [Google Scholar]
  27. Kimura M. Model of effectively neutral mutations in which selective constraint is incorporated. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3440–3444. doi: 10.1073/pnas.76.7.3440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kreitman M. E., Aguadé M. Excess polymorphism at the Adh locus in Drosophila melanogaster. Genetics. 1986 Sep;114(1):93–110. doi: 10.1093/genetics/114.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  30. Langley C. H., Aquadro C. F. Restriction-map variation in natural populations of Drosophila melanogaster: white-locus region. Mol Biol Evol. 1987 Nov;4(6):651–663. doi: 10.1093/oxfordjournals.molbev.a040467. [DOI] [PubMed] [Google Scholar]
  31. Langley C. H., Montgomery E., Quattlebaum W. F. Restriction map variation in the Adh region of Drosophila. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5631–5635. doi: 10.1073/pnas.79.18.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lee C. S., Curtis D., McCarron M., Love C., Gray M., Bender W., Chovnick A. Mutations affecting expression of the rosy locus in Drosophila melanogaster. Genetics. 1987 May;116(1):55–66. doi: 10.1093/genetics/116.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ohnishi S., Leigh Brown A. J., Voelker R. A., Langley C. H. Estimation of genetic variability in natural populations of Drosophila simulans by two-dimensional and starch gel electrophoresis. Genetics. 1982 Jan;100(1):127–136. doi: 10.1093/genetics/100.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reed K. C., Mann D. A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 1985 Oct 25;13(20):7207–7221. doi: 10.1093/nar/13.20.7207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rose M. R., Doolittle W. F. Molecular biological mechanisms of speciation. Science. 1983 Apr 8;220(4593):157–162. doi: 10.1126/science.220.4593.157. [DOI] [PubMed] [Google Scholar]
  36. Schaeffer S. W., Aquadro C. F., Langley C. H. Restriction-map variation in the Notch region of Drosophila melanogaster. Mol Biol Evol. 1988 Jan;5(1):30–40. doi: 10.1093/oxfordjournals.molbev.a040475. [DOI] [PubMed] [Google Scholar]
  37. Shah D. M., Langley C. H. Inter- and intraspecific variation in restriction maps of Drosophila mitochondrial DNAs. Nature. 1979 Oct 25;281(5733):696–699. doi: 10.1038/281696a0. [DOI] [PubMed] [Google Scholar]
  38. Singh R. S., Choudhary M., David J. R. Contrasting patterns of geographic variation in the cosmopolitan sibling species Drosophila melanogaster and Drosophila simulans. Biochem Genet. 1987 Feb;25(1-2):27–40. doi: 10.1007/BF00498949. [DOI] [PubMed] [Google Scholar]
  39. Singh R. S., Rhomberg L. R. A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. II. Estimates of Heterozygosity and Patterns of Geographic Differentiation. Genetics. 1987 Oct;117(2):255–271. doi: 10.1093/genetics/117.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Steinmetz M., Malissen M., Hood L., Orn A., Maki R. A., Dastoornikoo G. R., Stephan D., Gibb E., Romaniuk R. Tracts of high or low sequence divergence in the mouse major histocompatibility complex. EMBO J. 1984 Dec 1;3(12):2995–3003. doi: 10.1002/j.1460-2075.1984.tb02246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sturtevant A H. Genetic Studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. Genetics. 1920 Sep;5(5):488–500. doi: 10.1093/genetics/5.5.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zwiebel L. J., Cohn V. H., Wright D. R., Moore G. P. Evolution of single-copy DNA and the ADH gene in seven drosophilids. J Mol Evol. 1982;19(1):62–71. doi: 10.1007/BF02100224. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES