Skip to main content
Genetics logoLink to Genetics
. 1988 Sep;120(1):181–198. doi: 10.1093/genetics/120.1.181

Dosage-Dependent Modifiers of Position Effect Variegation in Drosophila and a Mass Action Model That Explains Their Effect

J Locke 1, M A Kotarski 1, K D Tartof 1
PMCID: PMC1203489  PMID: 3146523

Abstract

Twelve dominant enhancers of position effect variegation, representing four loci on the second and third chromosomes of Drosophila melanogaster, have been induced by P-element mutagenesis. Instead of simple transposon insertions, seven of these mutations are cytologically visible duplications and three are deficiencies. The duplications define two distinct regions, each coinciding with a locus that also behaves as a dominant haplo-dependent suppressor of variegation. Conversely, two of the deficiencies overlap with a region that contains a haplo-dependent enhancer of variegation while duplications of this same region act to suppress variegation. The third deficiency defines another haplo-dependent enhancer. These data indicate that loci capable of modifying variegation do so in an antipodal fashion through changes in the wild-type gene copy number and may be divided into two reciprocally acting classes. Class I modifiers enhance variegation when duplicated or suppress variegation when deficient. Class II modifiers enhance when deficient but suppress when duplicated. From our data, and those of others, we propose that in Drosophila there are about 20 to 30 dominant loci that modify variegation. Most appear to be of the class I type whereas only two class II modifiers have been identified so far. From these observations we put forth a model, based on the law of mass action, for understanding how such suppressor-enhancer loci function. We propose that each class I modifier codes for a structural protein component of heterochromatin and their effects on variegation are a consequence of their dosage dependent influence on the extent of the assembly of heterochromatin at the chromosomal site of the position effect. It is further proposed that class II modifiers may inhibit the class I products directly, bind to hypothetical termination sites that define heterochromatin boundaries or promote euchromatin formation. Consistent with our mass action model we find that combining two enhancers together produce additive and not epistatic effects. Also, since different enhancers have different relative strengths on different variegating mutants, we suggest that heterochromatic domains are constructed by a combinatorial association of proteins. The mass action model proposed here is of general significance for any assembly driven reaction and has implications for understanding a wide variety of biological phenomena. It may explain, for instance, how changes in gene dosage of such developmentally significant loci as runt, fushi tarazu, Suppressor of Hairless and the regulators of the Polycomb family produce antipodal phenotypes and thereby constitute developmental switches.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashburner M. The genetics of a small autosomal region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. III. Hypomorphic and hypermorphic mutations affecting the expression of hairless. Genetics. 1982 Jul-Aug;101(3-4):447–459. doi: 10.1093/genetics/101.3-4.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker B. S., Ridge K. A. Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster. Genetics. 1980 Feb;94(2):383–423. doi: 10.1093/genetics/94.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Engels W. R., Preston C. R. Components of hybrid dysgenesis in a wild population of Drosophila melanogaster. Genetics. 1980 May;95(1):111–128. doi: 10.1093/genetics/95.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ephrussi B, Herold J L. Studies of Eye Pigments of Drosophila. I. Methods of Extraction and Quantitative Estimation of the Pigment Components. Genetics. 1944 Mar;29(2):148–175. doi: 10.1093/genetics/29.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gergen J. P., Wieschaus E. Dosage requirements for runt in the segmentation of Drosophila embryos. Cell. 1986 Apr 25;45(2):289–299. doi: 10.1016/0092-8674(86)90393-4. [DOI] [PubMed] [Google Scholar]
  6. Kaufmann B P. Reversion from Roughest to Wild Type in Drosophila Melanogaster. Genetics. 1942 Sep;27(5):537–549. doi: 10.1093/genetics/27.5.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kennison J. A., Russell M. A. Dosage-Dependent Modifiers of Homoeotic Mutations in Drosophila melanogaster. Genetics. 1987 May;116(1):75–86. doi: 10.1093/genetics/116.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kidwell M. G., Kidwell J. F. Selection for male recombination in Drosophila melanogaster. Genetics. 1976 Oct;84(2):333–351. doi: 10.1093/genetics/84.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kotarski M. A., Pickert S., MacIntyre R. J. A cytogenetic analysis of the chromosomal region surrounding the alpha-glycerophosphate dehydrogenase locus of Drosophila melanogaster. Genetics. 1983 Oct;105(2):371–386. doi: 10.1093/genetics/105.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lifschytz E., Lindsley D. I. Sex chromosome activation during spermatogenesis. Genetics. 1974 Sep;78(1):323–331. doi: 10.1093/genetics/78.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nash D. The Mutational Basis for the "Allelic" Modifier Mutants, ENHANCER and SUPPRESSOR OF HAIRLESS, of DROSOPHILA MELANOGASTER. Genetics. 1970 Mar;64(3-4):471–479. doi: 10.1093/genetics/64.3-4.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. O'Brien S. J., Gethmann R. C. Segmental aneuploidy as a probe for structural genes in Drosophila: mitochondrial membrane enzymes. Genetics. 1973 Sep;75(1):155–167. doi: 10.1093/genetics/75.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  15. Reuter G., Gausz J., Gyurkovics H., Friede B., Bang R., Spierer A., Hall L. M., Spierer P. Modifiers of position-effect variegation in the region from 86C to 88B of the Drosophila melanogaster third chromosome. Mol Gen Genet. 1987 Dec;210(3):429–436. doi: 10.1007/BF00327193. [DOI] [PubMed] [Google Scholar]
  16. Reuter G., Szidonya J. Cytogenetic analysis of variegation suppressors and a dominant temperature-sensitive lethal in region 23-26 of chromosome 2L in Drosophila melanogaster. Chromosoma. 1983;88(4):277–285. doi: 10.1007/BF00292904. [DOI] [PubMed] [Google Scholar]
  17. Reuter G., Werner W., Hoffmann H. J. Mutants affecting position-effect heterochromatinization in Drosophila melanogaster. Chromosoma. 1982;85(4):539–551. doi: 10.1007/BF00327349. [DOI] [PubMed] [Google Scholar]
  18. Reuter G., Wolff I. Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet. 1981;182(3):516–519. doi: 10.1007/BF00293947. [DOI] [PubMed] [Google Scholar]
  19. Roberts P. A., Broderick D. J. Properties and evolutionary potential of newly induced tandem duplications in Drosophila melanogaster. Genetics. 1982 Sep;102(1):75–89. doi: 10.1093/genetics/102.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spofford J. B. Single-locus modification of position-effect variegation in Drosophila melanogaster. I. White variegation. Genetics. 1967 Dec;57(4):751–766. doi: 10.1093/genetics/57.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stewart B. R., Merriam J. R. Segmental aneuploidy and enzyme activity as a method for cytogenetic localization in drosophila melanogaster. Genetics. 1974 Feb;76(2):301–309. doi: 10.1093/genetics/76.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Struhl G. Near-reciprocal phenotypes caused by inactivation or indiscriminate expression of the Drosophila segmentation gene ftz. Nature. 1985 Dec 19;318(6047):677–680. doi: 10.1038/318677a0. [DOI] [PubMed] [Google Scholar]
  23. Sturtevant A H. The Effects of Unequal Crossing over at the Bar Locus in Drosophila. Genetics. 1925 Mar;10(2):117–147. doi: 10.1093/genetics/10.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tartof K. D., Hobbs C., Jones M. A structural basis for variegating position effects. Cell. 1984 Jul;37(3):869–878. doi: 10.1016/0092-8674(84)90422-7. [DOI] [PubMed] [Google Scholar]
  25. Velissariou V., Ashburner M. The secretory proteins of the larval salivary gland of Drosophila melanogaster: Cytogenetic correlation of a protein and a puff. Chromosoma. 1980;77(1):13–27. doi: 10.1007/BF00292038. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES