Abstract
The evolution of the probabilities of genetic identity within and between the loci of a multigene family is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, and the location dependence of the probabilities of identity is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is ε & 1. For interchromosomal conversion, the equilibrium probabilities of identity are within order ε [i.e., O(ε)] of those in a simple model that has no location dependence and, at equilibrium, no linkage disequilibrium. At equilibrium, the linkage disequilibria are of O(ε); they are evaluated explicitly with an error of O(ε(2)); they may be negative if symmetric heteroduplexes occur. The ultimate rate and pattern of convergence to equilibrium are within O(ε(2)) and O(ε), respectively, of that of the same simple model. If linkage is loose (i.e., all the crossover rates greatly exceed ε, though they may still be much less than 1/2), the linkage disequilibria are reduced to O(ε) in a time of O(-ln ε). If intrachromosomal conversion is incorporated, the same results hold for loose linkage, except that, if the crossover rates are much less than 1/2, then the linkage disequilibria generally exceed those for pure interchromosomal conversion.
Full Text
The Full Text of this article is available as a PDF (974.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boucher W., Nagylaki T. Regular systems of inbreeding. J Math Biol. 1988;26(2):121–142. doi: 10.1007/BF00277729. [DOI] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan N. L., Hudson R. R. On the divergence of genes in multigene families. Theor Popul Biol. 1987 Feb;31(1):178–194. doi: 10.1016/0040-5809(87)90028-1. [DOI] [PubMed] [Google Scholar]
- Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagylaki T., Barton N. Intrachromosomal gene conversion, linkage, and the evolution of multigene families. Theor Popul Biol. 1986 Jun;29(3):407–437. doi: 10.1016/0040-5809(86)90017-1. [DOI] [PubMed] [Google Scholar]
- Nagylaki T. Evolution of a large population under gene conversion. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5941–5945. doi: 10.1073/pnas.80.19.5941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagylaki T., Petes T. D. Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics. 1982 Feb;100(2):315–337. doi: 10.1093/genetics/100.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagylaki T. The evolution of multigene families under intrachromosomal gene conversion. Genetics. 1984 Mar;106(3):529–548. doi: 10.1093/genetics/106.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. A model of duplicative transposition and gene conversion for repetitive DNA families. Genetics. 1985 Jul;110(3):513–524. doi: 10.1093/genetics/110.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. Actual number of alleles contained in a multigene family. Genet Res. 1986 Oct;48(2):119–123. doi: 10.1017/s0016672300024848. [DOI] [PubMed] [Google Scholar]
- Ohta T. Allelic and nonallelic homology of a supergene family. Proc Natl Acad Sci U S A. 1982 May;79(10):3251–3254. doi: 10.1073/pnas.79.10.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Dover G. A. Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4079–4083. doi: 10.1073/pnas.80.13.4079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
- Walsh J. B. Selection and biased gene conversion in a multigene family: consequences of interallelic bias and threshold selection. Genetics. 1986 Mar;112(3):699–716. doi: 10.1093/genetics/112.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh J. B. Sequence-dependent gene conversion: can duplicated genes diverge fast enough to escape conversion? Genetics. 1987 Nov;117(3):543–557. doi: 10.1093/genetics/117.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh J. B. Unusual behaviour of linkage disequilibrium in two-locus gene conversion models. Genet Res. 1988 Feb;51(1):55–58. doi: 10.1017/s0016672300023946. [DOI] [PubMed] [Google Scholar]
- Weir B. S., Ohta T., Tachida H. Gene conversion models. J Theor Biol. 1985 Sep 7;116(1):1–8. doi: 10.1016/s0022-5193(85)80127-2. [DOI] [PubMed] [Google Scholar]