Abstract
It is assumed that a population has M males in every generation, each of which is permanently mated with c - 1 females, and that a proportion β of matings are between males and their full sisters or half-sisters. Recurrence equations are derived for the inbreeding coefficient of one random individual, coefficients of kinship of random pairs of mates and probabilities of allelic identity when the infinite alleles model holds. If F(t) is the inbreeding coefficient at time t and M is large, (1 - F(t))/(1 - F(t-1)) -> 1 - 1/(2N(e)) as t increases. The effective population number N(e) & aM/[1 + (2a - 1)F(IS)], where F(IS) is the inbreeding coefficient at equilibrium when M is infinite and the constant a depends upon the conditional probabilities of matings between full sibs and the two possible types of half-sibs. When there are M permanent couples, an approximation to the probability that an allele A survives if it is originally present in one AA heterozygote is proportional to F(IS)s(1) + (1 - F(IS))s(2), where s(1) and s(2) are the selective advantages of AA and AA in comparison with AA. The paper concludes with a comparison between the results when there is partial selfing, partial full sib mating (c = 2) and partial sib mating when c is large.
Full Text
The Full Text of this article is available as a PDF (641.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eshel I. On the survival probability of a slightly advantageous mutant gene in a multitype population: a multidimensional branching process model. J Math Biol. 1984;19(2):201–209. doi: 10.1007/BF00277746. [DOI] [PubMed] [Google Scholar]
- Pollak E. On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics. 1987 Oct;117(2):353–360. doi: 10.1093/genetics/117.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Isolation by Distance. Genetics. 1943 Mar;28(2):114–138. doi: 10.1093/genetics/28.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
