Skip to main content
Genetics logoLink to Genetics
. 1988 Oct;120(2):367–377. doi: 10.1093/genetics/120.2.367

Different Types of Recombination Events Are Controlled by the Rad1 and Rad52 Genes of Saccharomyces Cerevisiae

H L Klein 1
PMCID: PMC1203516  PMID: 3058548

Abstract

Intrachromosomal recombination within heteroallelic duplications located on chromosomes III and XV of Saccharomyces cerevisae has been examined. Both possible orientations of alleles have been used in each duplication. Three recombinant classes, gene conversions, pop-outs and triplications, were recovered. Some of the recombinant classes were not anticipated from the particular allele orientation of the duplication. Recovery of these unexpected recombinants requires the RAD1 gene. These studies show that RAD1 has a role in recombination between repeated sequences, and that the recombination event is a gene conversion associated with a crossover. These events appear to involve very localized conversion of a heteroduplex region and are distinct from RAD52 mediated gene conversion events. Evidence is also presented to suggest that most recombination events between direct repeats are intrachromatid, not between sister chromatids.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clewell D. B., Helinski D. R. Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificity of the relaxation event. Biochemistry. 1970 Oct 27;9(22):4428–4440. doi: 10.1021/bi00824a026. [DOI] [PubMed] [Google Scholar]
  2. Cooper P. K. Characterization of long patch excision repair of DNA in ultraviolet-irradiated Escherichia coli: an inducible function under rec-lex control. Mol Gen Genet. 1982;185(2):189–197. doi: 10.1007/BF00330785. [DOI] [PubMed] [Google Scholar]
  3. Ernst J. F., Hampsey D. M., Sherman F. DNA sequences of frameshift and other mutations induced by ICR-170 in yeast. Genetics. 1985 Oct;111(2):233–241. doi: 10.1093/genetics/111.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  5. Game J. C., Zamb T. J., Braun R. J., Resnick M., Roth R. M. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. doi: 10.1093/genetics/94.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haber J. E., Hearn M. Rad52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosomal loss. Genetics. 1985 Sep;111(1):7–22. doi: 10.1093/genetics/111.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hamza H., Kalogeropoulos A., Nicolas A., Rossignol J. L. Two mechanisms for directional gene conversion. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7386–7390. doi: 10.1073/pnas.83.19.7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoekstra M. F., Malone R. E. Excision repair functions in Saccharomyces cerevisiae recognize and repair methylation of adenine by the Escherichia coli dam gene. Mol Cell Biol. 1986 Oct;6(10):3555–3558. doi: 10.1128/mcb.6.10.3555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoekstra M. F., Naughton T., Malone R. E. Properties of spontaneous mitotic recombination occurring in the presence of the rad52-1 mutation of Saccharomyces cerevisiae. Genet Res. 1986 Aug;48(1):9–17. doi: 10.1017/s0016672300024599. [DOI] [PubMed] [Google Scholar]
  10. Jackson J. A., Fink G. R. Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae. Genetics. 1985 Feb;109(2):303–332. doi: 10.1093/genetics/109.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jinks-Robertson S., Petes T. D. Chromosomal translocations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics. 1986 Nov;114(3):731–752. doi: 10.1093/genetics/114.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klein H. L., Petes T. D. Intrachromosomal gene conversion in yeast. Nature. 1981 Jan 15;289(5794):144–148. doi: 10.1038/289144a0. [DOI] [PubMed] [Google Scholar]
  13. Kuemmerle N., Ley R., Masker W. Analysis of resynthesis tracts in repaired Escherichia coli deoxyribonucleic acid. J Bacteriol. 1981 Aug;147(2):333–339. doi: 10.1128/jb.147.2.333-339.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Malone R. E., Esposito R. E. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci U S A. 1980 Jan;77(1):503–507. doi: 10.1073/pnas.77.1.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mathison L., Culbertson M. R. Suppressible and nonsuppressible +1 G-C base pair insertions induced by ICR-170 at the his4 locus in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Sep;5(9):2247–2256. doi: 10.1128/mcb.5.9.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prakash S., Prakash L., Burke W., Montelone B. A. Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE. Genetics. 1980 Jan;94(1):31–50. doi: 10.1093/genetics/94.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Resnick M. A., Boyce J., Cox B. Postreplication repair in Saccharomyces cerevisiae. J Bacteriol. 1981 Apr;146(1):285–290. doi: 10.1128/jb.146.1.285-290.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Resnick M. A., Game J. C., Stasiewicz S. Genetic effects of UV irradiation on excision-proficient and -deficient yeast during meiosis. Genetics. 1983 Aug;104(4):603–618. doi: 10.1093/genetics/104.4.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reynolds R. J., Friedberg E. C. Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: incision of ultraviolet-irradiated deoxyribonucleic acid in vivo. J Bacteriol. 1981 May;146(2):692–704. doi: 10.1128/jb.146.2.692-704.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rothstein R., Helms C., Rosenberg N. Concerted deletions and inversions are caused by mitotic recombination between delta sequences in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Mar;7(3):1198–1207. doi: 10.1128/mcb.7.3.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sang H., Whitehouse H. L. Genetic Recombination at the Buff Spore Color Locus in SORDARIA BREVICOLLIS. II. Analysis of Flanking Marker Behavior in Crosses between Buff Mutants. Genetics. 1983 Feb;103(2):161–178. doi: 10.1093/genetics/103.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schiestl R. H., Igarashi S., Hastings P. J. Analysis of the mechanism for reversion of a disrupted gene. Genetics. 1988 Jun;119(2):237–247. doi: 10.1093/genetics/119.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  26. Theivendirarajah K., Whitehouse H. L. Further evidence that aberrant segregation and crossing over in Sordaria brevicollis may be discrete, though associated, events. Mol Gen Genet. 1983;190(3):432–437. doi: 10.1007/BF00331073. [DOI] [PubMed] [Google Scholar]
  27. Unrau P., Wheatcroft R., Cox B. S. The excision of pyrimidine dimers from DNA of ultraviolet irradiated yeast. Mol Gen Genet. 1971;113(4):359–362. doi: 10.1007/BF00272336. [DOI] [PubMed] [Google Scholar]
  28. Wilcox D. R., Prakash L. Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J Bacteriol. 1981 Nov;148(2):618–623. doi: 10.1128/jb.148.2.618-623.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES