Skip to main content
Genetics logoLink to Genetics
. 1988 Nov;120(3):637–644. doi: 10.1093/genetics/120.3.637

Effects of Amino Acid Substitutions at the Active Site in Escherichia Coli β-Galactosidase

C G Cupples 1, J H Miller 1
PMCID: PMC1203541  PMID: 2906303

Abstract

Forty-nine amino acid substitutions were made at four positions in the Escherichia coli enzyme β-galactosidase; three of the four targeted amino acids are thought to be part of the active site. Many of the substitutions were made by converting the appropriate codon in lacZ to an amber codon, and using one of 12 suppressor strains to introduce the replacement amino acid. Glu-461 and Tyr-503 were replaced, independently, with 13 amino acids. All 26 of the strains containing mutant enzymes are Lac(-). Enzyme activity is reduced to less than 10% of wild type by substitutions at Glu-461 and to less than 1% of wild type by substitutions at Tyr-503. Many of the mutant enzymes have less than 0.1% wild-type activity. His-464 and Met-3 were replaced with 11 and 12 amino acids, respectively. Strains containing any one of these mutant proteins are Lac(+). The results support previous evidence that Glu-461 and Tyr-503 are essential for catalysis, and suggest that His-464 is not part of the active site. Site-directed mutagenesis was facilitated by construction of an f1 bacteriophage containing the complete lacZ gene on a single EcoRI fragment.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boeke J. D. One and two codon insertion mutants of bacteriophage f1. Mol Gen Genet. 1981;181(3):288–291. doi: 10.1007/BF00425599. [DOI] [PubMed] [Google Scholar]
  2. Fowler A. V., Zabin I., Sinnott M. L., Zabin I. Methionine 500, the site of covalent attachment of an active site-directed reagent of beta-galactosidase. J Biol Chem. 1978 Aug 10;253(15):5283–5285. [PubMed] [Google Scholar]
  3. Langridge J., Campbell J. H. Classification and intragenic position of mutations in the beta-galactosidase gene of Escherichia coli. Mol Gen Genet. 1969;103(4):339–347. doi: 10.1007/BF00383484. [DOI] [PubMed] [Google Scholar]
  4. Langridge J. Mutation spectra and the neutrality of mutations. Aust J Biol Sci. 1974 Jun;27(3):309–319. doi: 10.1071/bi9740309. [DOI] [PubMed] [Google Scholar]
  5. Miller J. H., Albertini A. M. Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol. 1983 Feb 15;164(1):59–71. doi: 10.1016/0022-2836(83)90087-6. [DOI] [PubMed] [Google Scholar]
  6. Miller J. H., Coulondre C., Hofer M., Schmeissner U., Sommer H., Schmitz A., Lu P. Genetic studies of the lac repressor. IX. Generation of altered proteins by the suppression of nonsence mutations. J Mol Biol. 1979 Jun 25;131(2):191–222. doi: 10.1016/0022-2836(79)90073-1. [DOI] [PubMed] [Google Scholar]
  7. Müller-Hill B., Kania J. Lac repressor can be fused to beta-galactosidase. Nature. 1974 Jun 7;249(457):561–563. doi: 10.1038/249561a0. [DOI] [PubMed] [Google Scholar]
  8. Normanly J., Masson J. M., Kleina L. G., Abelson J., Miller J. H. Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6548–6552. doi: 10.1073/pnas.83.17.6548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sinnott M. L. Ions, ion-pairs and catalysis by the lacZ beta-galactosidase of Escherichia coli. FEBS Lett. 1978 Oct 1;94(1):1–9. doi: 10.1016/0014-5793(78)80894-1. [DOI] [PubMed] [Google Scholar]
  10. Sinnott M. L., Smith P. J. Affinity labelling with a deaminatively generated carbonium ion. Kinetics and stoicheiometry of the alkylation of methionine-500 of the lacZ beta-galactosidase of Escherichia coli by beta-D-galactopyranosylmethyl-p-nitrophenyltriazene. Biochem J. 1978 Nov 1;175(2):525–538. doi: 10.1042/bj1750525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith K. A., Nowlan S. F., Middleton S. A., O'Donovan C., Kantrowitz E. R. Involvement of tryptophan 209 in the allosteric interactions of Escherichia coli aspartate transcarbamylase using single amino acid substitution mutants. J Mol Biol. 1986 May 5;189(1):227–238. doi: 10.1016/0022-2836(86)90393-1. [DOI] [PubMed] [Google Scholar]
  12. Straus D., Raines R., Kawashima E., Knowles J. R., Gilbert W. Active site of triosephosphate isomerase: in vitro mutagenesis and characterization of an altered enzyme. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2272–2276. doi: 10.1073/pnas.82.8.2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Welply J. K., Fowler A. V., Zabin I. beta-Galactosidase alpha-complementation. Effect of single amino acid substitutions. J Biol Chem. 1981 Jul 10;256(13):6811–6816. [PubMed] [Google Scholar]
  14. Zabin I. beta-Galactosidase alpha-complementation. A model of protein-protein interaction. Mol Cell Biochem. 1982 Nov 26;49(2):87–96. doi: 10.1007/BF00242487. [DOI] [PubMed] [Google Scholar]
  15. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 1982 Oct 25;10(20):6487–6500. doi: 10.1093/nar/10.20.6487. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES