Skip to main content
Genetics logoLink to Genetics
. 1988 Nov;120(3):697–705. doi: 10.1093/genetics/120.3.697

A Conditional Mutant Having Paralyzed Cilia and a Block in Cytokinesis Is Rescued by Cytoplasmic Exchange in Tetrahymena Thermophila

D G Pennock 1, T Thatcher 1, J Bowen 1, P J Bruns 1, M A Gorovsky 1
PMCID: PMC1203548  PMID: 3224807

Abstract

Nineteen mutants that are conditional for both the ability to regain motility following deciliation and the ability to grow were isolated. The mutations causing slow growth were placed into five complementation groups. None of the mutations appears to affect energy production as all mutants remained motile at the restrictive temperature. In three complementation groups protein synthesis and the levels of mRNA encoding α-tubulin or actin were largely unaffected at the restrictive temperature, consistent with the hypothesis that mutations in these three groups directly affect the assembly of functional cilia and growth. Complementation group 1 was chosen for further characterization. Both phenotypes were shown to be linked, suggesting they are caused by a single mutation. Group 1 mutants regenerated cilia at the restrictive temperature, but the cilia were nonmotile. This mutation also caused a block in cytokinesis at the restrictive temperature but did not affect nuclear divisions or DNA synthesis. The block in cell division was transiently rescued by wild-type cytoplasm exchanged when mutants were paired with wild-type cells during conjugation (round 1 of genomic exclusion). Thus, at least one mutation has been isolated that affects assembly of some microtubule-based structures in Tetrahymena (cilia during regeneration) but not others (nuclei divide at 38°), and the product of this gene is likely to play a role in both ciliary function and in cytokinesis.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. J Protozool. 1967 Nov;14(4):553–565. doi: 10.1111/j.1550-7408.1967.tb02042.x. [DOI] [PubMed] [Google Scholar]
  2. Allen S. L. Cytogenetics of genomic exclusion in Tetrahymena. Genetics. 1967 Apr;55(4):797–822. doi: 10.1093/genetics/55.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen S. L. Genomic exclusion: a rapid means for inducing homozygous diploid lines in Tetrahymena pyriformis, syngen 1. Science. 1967 Feb 3;155(3762):575–577. doi: 10.1126/science.155.3762.575. [DOI] [PubMed] [Google Scholar]
  4. Bruns P. J., Brussard T. B. Positive selection for mating with functional heterokaryons in Tetrahymena pyriformis. Genetics. 1974 Nov;78(3):831–841. doi: 10.1093/genetics/78.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Callahan R. C., Shalke G., Gorovsky M. A. Developmental rearrangements associated with a single type of expressed alpha-tubulin gene in Tetrahymena. Cell. 1984 Feb;36(2):441–445. doi: 10.1016/0092-8674(84)90237-x. [DOI] [PubMed] [Google Scholar]
  6. Calzone F. J., Angerer R. C., Gorovsky M. A. Regulation of protein synthesis in Tetrahymena. Quantitative estimates of the parameters determining the rates of protein synthesis in growing, starved, and starved-deciliated cells. J Biol Chem. 1983 Jun 10;258(11):6887–6898. [PubMed] [Google Scholar]
  7. Calzone F. J., Gorovsky M. A. Cilia regeneration in Tetrahymena. A simple reproducible method for producing large numbers of regenerating cells. Exp Cell Res. 1982 Aug;140(2):471–476. doi: 10.1016/0014-4827(82)90144-6. [DOI] [PubMed] [Google Scholar]
  8. Davidson L., LaFountain J. R., Jr Mitosis and early meiosis in Tetrahymena pyriformis and the evolution of mitosis in the phylum Ciliophora. Biosystems. 1975 Nov;7(3-4):326–336. doi: 10.1016/0303-2647(75)90010-6. [DOI] [PubMed] [Google Scholar]
  9. Doerder F. P., Berkowitz M. S. Nucleo-cytoplasmic interaction during macronuclear differentiation in ciliate protists: genetic basis for cytoplasmic control of SerH expression during macronuclear development in Tetrahymena thermophila. Genetics. 1987 Sep;117(1):13–23. doi: 10.1093/genetics/117.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frankel J., Nelsen E. M., Jenkins L. M. Mutations affecting cell division in Tetrahymena pyriformis, syngen 1. II. Phenotypes of single and double homozygotes. Dev Biol. 1977 Jul 15;58(2):255–275. doi: 10.1016/0012-1606(77)90091-4. [DOI] [PubMed] [Google Scholar]
  11. Guttman S. D., Gorovsky M. A. Cilia regeneration in starved tetrahymena: an inducible system for studying gene expression and organelle biogenesis. Cell. 1979 Jun;17(2):307–317. doi: 10.1016/0092-8674(79)90156-9. [DOI] [PubMed] [Google Scholar]
  12. Haga N., Forte M., Ramanathan R., Hennessey T., Takahashi M., Kung C. Characterization and purification of a soluble protein controlling Ca-channel activity in paramecium. Cell. 1984 Nov;39(1):71–78. doi: 10.1016/0092-8674(84)90192-2. [DOI] [PubMed] [Google Scholar]
  13. LaFountain J. R., Jr, Davidson L. A. An analysis of spindle ultrastructure during prometaphase and metaphase of micronuclear division in Tetrahymena. Chromosoma. 1979;75(3):293–308. doi: 10.1007/BF00293473. [DOI] [PubMed] [Google Scholar]
  14. Martindale D. W., Allis C. D., Bruns P. J. Conjugation in Tetrahymena thermophila. A temporal analysis of cytological stages. Exp Cell Res. 1982 Jul;140(1):227–236. doi: 10.1016/0014-4827(82)90172-0. [DOI] [PubMed] [Google Scholar]
  15. Nilsson J. R., Williams N. E. An electron microscope study of the oral apparatus of Tetrahymena pyriformis. C R Trav Lab Carlsberg. 1966;35(7):119–141. [PubMed] [Google Scholar]
  16. Orias E., Bruns P. J. Induction and isolation of mutants in Tetrahymena. Methods Cell Biol. 1976;13:247–282. [PubMed] [Google Scholar]
  17. Orias E., Hamilton E. P., Flacks M. Osmotic shock prevents nuclear exchange and produces whole-genome homozygotes in conjugating Tetrahymena. Science. 1979 Feb 16;203(4381):660–663. doi: 10.1126/science.760210. [DOI] [PubMed] [Google Scholar]
  18. Orias J. D., Hamilton E. P., Orias E. A microtubule meshwork associated with gametic pronucleus transfer across a cell-cell junction. Science. 1983 Oct 14;222(4620):181–184. doi: 10.1126/science.6623070. [DOI] [PubMed] [Google Scholar]
  19. Pennock D. G., Thatcher T., Gorovsky M. A. A temperature-sensitive mutation affecting cilia regeneration, nuclear development, and the cell cycle of Tetrahymena thermophila is rescued by cytoplasmic exchange. Mol Cell Biol. 1988 Jul;8(7):2681–2689. doi: 10.1128/mcb.8.7.2681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Piperno G., Fuller M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol. 1985 Dec;101(6):2085–2094. doi: 10.1083/jcb.101.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Piperno G., Luck D. J. An actin-like protein is a component of axonemes from Chlamydomonas flagella. J Biol Chem. 1979 Apr 10;254(7):2187–2190. [PubMed] [Google Scholar]
  22. Rosenbaum J. L., Carlson K. Cilia regeneration in Tetrahymena and its inhibition by colchicine. J Cell Biol. 1969 Feb;40(2):415–425. doi: 10.1083/jcb.40.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seyfert H. M. The abundance of alpha-tubulin mRNA increases during ciliary regeneration in Tetrahymena, and this occurs independently of the soluble tubulin content. Eur J Cell Biol. 1987 Apr;43(2):182–188. [PubMed] [Google Scholar]
  25. Suprenant K. A., Hays E., LeCluyse E., Dentler W. L. Multiple forms of tubulin in the cilia and cytoplasm of Tetrahymena thermophila. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6908–6912. doi: 10.1073/pnas.82.20.6908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tondravi M. M., Yao M. C. Transformation of Tetrahymena thermophila by microinjection of ribosomal RNA genes. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4369–4373. doi: 10.1073/pnas.83.12.4369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williams N. E., Williams R. J. Macronuclear division with and without microtubules in Tetrahymena. J Cell Sci. 1976 Jan;20(1):61–77. doi: 10.1242/jcs.20.1.61. [DOI] [PubMed] [Google Scholar]
  28. Yu S. M., Gorovsky M. A. In situ dot blots: quantitation of mRNA in intact cells. Nucleic Acids Res. 1986 Oct 10;14(19):7597–7615. doi: 10.1093/nar/14.19.7597. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES