Skip to main content
Genetics logoLink to Genetics
. 1988 Nov;120(3):809–818. doi: 10.1093/genetics/120.3.809

Recombination within a Subclass of Restriction Fragment Length Polymorphisms May Help Link Classical and Molecular Genetics

R B Meagher 1, M D McLean 1, J Arnold 1
PMCID: PMC1203558  PMID: 2906304

Abstract

Restriction fragment length polymorphisms (RFLPs) are being used to construct complete linkage maps for many eukaryotic genomes. These RFLP maps can be used to predict the inheritance of important phenotypic loci and will assist in the molecular cloning of linked gene(s) which affect phenotypes of scientific, medical and agronomic importance. However, genetic linkage implies very little about the actual physical distances between loci. An assay is described which uses genetic recombinants to measure physical distance from a DNA probe to linked phenotypic loci. We have defined the subset of all RFLPs which have polymorphic restriction sites at both ends as class II RFLPs. The frequency of class II RFLPs is computed as a function of sequence divergence and total RFLP frequency for highly divergent genomes. Useful frequencies exist between organisms which differ by more than 7% in DNA sequence. Recombination within class II RFLPs will produce fragments of novel sizes which can be assayed by pulsed field electrophoresis to estimate physical distance in kilobase pairs between linked RFLP and phenotypic loci. This proposed assay should have particular applications to crop plants where highly divergent and polymorphic species are often genetically compatible and thus, where class II RFLPs will be most frequent.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J., Cuticchia A. J., Newsome D. A., Jennings W. W., 3rd, Ivarie R. Mono- through hexanucleotide composition of the sense strand of yeast DNA: a Markov chain analysis. Nucleic Acids Res. 1988 Jul 25;16(14B):7145–7158. doi: 10.1093/nar/16.14.7145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baird W. V., Meagher R. B. A complex gene superfamily encodes actin in petunia. EMBO J. 1987 Nov;6(11):3223–3231. doi: 10.1002/j.1460-2075.1987.tb02639.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender W., Akam M., Karch F., Beachy P. A., Peifer M., Spierer P., Lewis E. B., Hogness D. S. Molecular Genetics of the Bithorax Complex in Drosophila melanogaster. Science. 1983 Jul 1;221(4605):23–29. doi: 10.1126/science.221.4605.23. [DOI] [PubMed] [Google Scholar]
  4. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  5. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  6. Carle G. F., Olson M. V. An electrophoretic karyotype for yeast. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3756–3760. doi: 10.1073/pnas.82.11.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  8. Clarke L., Carbon J. Isolation of the centromere-linked CDC10 gene by complementation in yeast. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2173–2177. doi: 10.1073/pnas.77.4.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dooner H. K. Genetic Fine Structure of the BRONZE Locus in Maize. Genetics. 1986 Aug;113(4):1021–1036. doi: 10.1093/genetics/113.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gardiner K., Laas W., Patterson D. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat Cell Mol Genet. 1986 Mar;12(2):185–195. doi: 10.1007/BF01560665. [DOI] [PubMed] [Google Scholar]
  11. Gemmill R. M., Coyle-Morris J. F., McPeek F. D., Jr, Ware-Uribe L. F., Hecht F. Construction of long-range restriction maps in human DNA using pulsed field gel electrophoresis. Gene Anal Tech. 1987 Nov-Dec;4(6):119–131. doi: 10.1016/0735-0651(87)90010-0. [DOI] [PubMed] [Google Scholar]
  12. Johns M. A., Strommer J. N., Freeling M. Exceptionally High Levels of Restriction Site Polymorphism in DNA near the Maize Adh1 Gene. Genetics. 1983 Nov;105(3):733–743. doi: 10.1093/genetics/105.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lander E. S., Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987 Jun 19;236(4808):1567–1570. doi: 10.1126/science.2884728. [DOI] [PubMed] [Google Scholar]
  14. Lander E. S., Botstein D. Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7353–7357. doi: 10.1073/pnas.83.19.7353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McClelland M., Kessler L. G., Bittner M. Site-specific cleavage of DNA at 8- and 10-base-pair sequences. Proc Natl Acad Sci U S A. 1984 Feb;81(4):983–987. doi: 10.1073/pnas.81.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Michiels F., Burmeister M., Lehrach H. Derivation of clones close to met by preparative field inversion gel electrophoresis. Science. 1987 Jun 5;236(4806):1305–1308. doi: 10.1126/science.3035716. [DOI] [PubMed] [Google Scholar]
  17. Müller U., Stephan D., Philippsen P., Steinmetz M. Orientation and molecular map position of the complement genes in the mouse MHC. EMBO J. 1987 Feb;6(2):369–373. doi: 10.1002/j.1460-2075.1987.tb04764.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakaseko Y., Adachi Y., Funahashi S., Niwa O., Yanagida M. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 1986 May;5(5):1011–1021. doi: 10.1002/j.1460-2075.1986.tb04316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nguyen C., Pontarotti P., Birnbaum D., Chimini G., Rey J. A., Mattei J. F., Jordan B. R. Large scale physical mapping in the q27 region of the human X chromosome: the coagulation factor IX gene and the mcf.2 transforming sequence are separated by at most 270 kilobase pairs and are surrounded by several 'HTF islands'. EMBO J. 1987 Nov;6(11):3285–3289. doi: 10.1002/j.1460-2075.1987.tb02647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Phillips G. J., Arnold J., Ivarie R. Mono- through hexanucleotide composition of the Escherichia coli genome: a Markov chain analysis. Nucleic Acids Res. 1987 Mar 25;15(6):2611–2626. doi: 10.1093/nar/15.6.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Poustka A., Pohl T. M., Barlow D. P., Frischauf A. M., Lehrach H. Construction and use of human chromosome jumping libraries from NotI-digested DNA. Nature. 1987 Jan 22;325(6102):353–355. doi: 10.1038/325353a0. [DOI] [PubMed] [Google Scholar]
  23. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  24. Senecoff J. F., Cox M. M. Directionality in FLP protein-promoted site-specific recombination is mediated by DNA-DNA pairing. J Biol Chem. 1986 Jun 5;261(16):7380–7386. [PubMed] [Google Scholar]
  25. Shiloh Y., Shipley J., Brodeur G. M., Bruns G., Korf B., Donlon T., Schreck R. R., Seeger R., Sakai K., Latt S. A. Differential amplification, assembly, and relocation of multiple DNA sequences in human neuroblastomas and neuroblastoma cell lines. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3761–3765. doi: 10.1073/pnas.82.11.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith C. L., Econome J. G., Schutt A., Klco S., Cantor C. R. A physical map of the Escherichia coli K12 genome. Science. 1987 Jun 12;236(4807):1448–1453. doi: 10.1126/science.3296194. [DOI] [PubMed] [Google Scholar]
  27. Steinmetz M., Stephan D., Fischer Lindahl K. Gene organization and recombinational hotspots in the murine major histocompatibility complex. Cell. 1986 Mar 28;44(6):895–904. doi: 10.1016/0092-8674(86)90012-7. [DOI] [PubMed] [Google Scholar]
  28. Upholt W. B. Estimation of DNA sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids Res. 1977;4(5):1257–1265. doi: 10.1093/nar/4.5.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zachar Z., Bingham P. M. Regulation of white locus expression: the structure of mutant alleles at the white locus of Drosophila melanogaster. Cell. 1982 Sep;30(2):529–541. doi: 10.1016/0092-8674(82)90250-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES