Skip to main content
Genetics logoLink to Genetics
. 1988 Dec;120(4):1003–1013. doi: 10.1093/genetics/120.4.1003

Amplification of Kp Elements Associated with the Repression of Hybrid Dysgenesis in Drosophila Melanogaster

M S Jackson 1, D M Black 1, G A Dover 1
PMCID: PMC1203564  PMID: 2852140

Abstract

Mobile P elements in Drosophila melanogaster cause hybrid dysgenesis if their mobility is not repressed. One type of repression, termed P cytotype, is a complex interaction between chromosomes carrying P elements and cytoplasm and is transmitted through the cytoplasm only of females. Another type of repression is found in worldwide M' strains that contain approximately 30 copies per individual of one particular P element deletion-derivative termed the KP element. This repression is transmitted equally through both sexes. In the present study we show that biparentally transmitted repression increases in magnitude together with a rapid increase in KP copy-number in genotypes starting with one or a few KP elements and no other deletion-derivatives. Such correlated increases in repression and KP number per genome occur only in the presence of complete P elements, supporting the interpretation that they are probably a consequence of the selective advantage enjoyed by flies carrying the highest numbers of KP elements. Analysis of Q strains also reveals the presence of qualitative differences in the way the repression of dysgenesis is transmitted. In general, Q strains not containing KP elements have the P cytotype mode of repression, whereas Q strains with KP elements transmit repression through both sexes. This difference among Q strains further supports the existence of at least two types of repression of P-induced hybrid dysgenesis in natural populations of D. melanogaster.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anxolabéhère D., Nouaud D., Périquet G., Tchen P. P-element distribution in Eurasian populations of Drosophila melanogaster: A genetic and molecular analysis. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5418–5422. doi: 10.1073/pnas.82.16.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bingham P. M., Kidwell M. G., Rubin G. M. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell. 1982 Jul;29(3):995–1004. doi: 10.1016/0092-8674(82)90463-9. [DOI] [PubMed] [Google Scholar]
  3. Bingham P. M. The Regulation of White Locus Expression: A Dominant Mutant Allele at the White Locus of DROSOPHILA MELANOGASTER. Genetics. 1980 Jun;95(2):341–353. doi: 10.1093/genetics/95.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black D. M., Jackson M. S., Kidwell M. G., Dover G. A. KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO J. 1987 Dec 20;6(13):4125–4135. doi: 10.1002/j.1460-2075.1987.tb02758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coen E. S., Thoday J. M., Dover G. Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature. 1982 Feb 18;295(5850):564–568. doi: 10.1038/295564a0. [DOI] [PubMed] [Google Scholar]
  6. Daniels S. B., Clark S. H., Kidwell M. G., Chovnick A. Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analyses of long-established transformed lines. Genetics. 1987 Apr;115(4):711–723. doi: 10.1093/genetics/115.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fyrberg E. A., Bond B. J., Hershey N. D., Mixter K. S., Davidson N. The actin genes of Drosophila: protein coding regions are highly conserved but intron positions are not. Cell. 1981 Apr;24(1):107–116. doi: 10.1016/0092-8674(81)90506-7. [DOI] [PubMed] [Google Scholar]
  8. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  9. Kidwell M. G. Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. Genetics. 1985 Oct;111(2):337–350. doi: 10.1093/genetics/111.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kidwell M. G. Hybrid dysgenesis in Drosophila melanogaster: the genetics of cytotype determination in a neutral strain. Genetics. 1981 Jun;98(2):275–290. doi: 10.1093/genetics/98.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kidwell M. G., Kidwell J. F., Sved J. A. Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination. Genetics. 1977 Aug;86(4):813–833. doi: 10.1093/genetics/86.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laski F. A., Rio D. C., Rubin G. M. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell. 1986 Jan 17;44(1):7–19. doi: 10.1016/0092-8674(86)90480-0. [DOI] [PubMed] [Google Scholar]
  13. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  14. Ronsseray S., Anxolabéhère D., Périquet G. Hybrid dysgenesis in Drosophila melanogaster: influence of temperature on cytotype determination in the P-M system. Mol Gen Genet. 1984;196(1):17–23. doi: 10.1007/BF00334086. [DOI] [PubMed] [Google Scholar]
  15. Sakoyama Y., Todo T., Ishiwa-Chigusa S., Honjo T., Kondo S. Structures of defective P transposable elements prevalent in natural Q and Q-derived M strains of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6236–6239. doi: 10.1073/pnas.82.18.6236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schaefer R. E., Kidwell M. G., Fausto-Sterling A. Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: Morphological and Cytological Studies of Ovarian Dysgenesis. Genetics. 1979 Aug;92(4):1141–1152. doi: 10.1093/genetics/92.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tautz D., Renz M. An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem. 1983 Jul 1;132(1):14–19. doi: 10.1016/0003-2697(83)90419-0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES