Skip to main content
Genetics logoLink to Genetics
. 1988 Dec;120(4):1061–1072. doi: 10.1093/genetics/120.4.1061

Requirements for Hedgehog, a Segmental Polarity Gene, in Patterning Larval and Adult Cuticle of Drosophila

J Mohler 1
PMCID: PMC1203569  PMID: 3147217

Abstract

Mutations of the hedgehog gene are generally embryonic lethal, resulting in a lawn of denticles on the ventral surface. In strong alleles, no segmentation is obvious and the anteroposterior polarity of ventral denticles is lost. Temperature shift analysis of a temperature-sensitive allele indicates an embryonic activity period for hedgehog between 2.5 and 6 hr of embryonic development (at 25°) and a larval/pupal period from 4 to 7 days of development (at 25°). Mosaic analysis of hedgehog mutations in the adult cuticle indicates a series of defined defects associated with the failure of appropriate hedgehog expression. In particular, defects in the distal portions of the legs and antenna occur in association with homozygous hedgehog clones in the posterior compartment of those structures. Because the defects are associated with homozygous clones, but are not co-extensive, a type of ``domineering'' nonautonomy is proposed for the activity of the hedgehog gene.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akam M. The molecular basis for metameric pattern in the Drosophila embryo. Development. 1987 Sep;101(1):1–22. [PubMed] [Google Scholar]
  2. Baker N. E. Embryonic and imaginal requirements for wingless, a segment-polarity gene in Drosophila. Dev Biol. 1988 Jan;125(1):96–108. doi: 10.1016/0012-1606(88)90062-0. [DOI] [PubMed] [Google Scholar]
  3. Baumgartner S., Bopp D., Burri M., Noll M. Structure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis. Genes Dev. 1987 Dec;1(10):1247–1267. doi: 10.1101/gad.1.10.1247. [DOI] [PubMed] [Google Scholar]
  4. Brower D. L. Engrailed gene expression in Drosophila imaginal discs. EMBO J. 1986 Oct;5(10):2649–2656. doi: 10.1002/j.1460-2075.1986.tb04547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DiNardo S., Sher E., Heemskerk-Jongens J., Kassis J. A., O'Farrell P. H. Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature. 1988 Apr 14;332(6165):604–609. doi: 10.1038/332604a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frasch M., Levine M. Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. Genes Dev. 1987 Nov;1(9):981–995. doi: 10.1101/gad.1.9.981. [DOI] [PubMed] [Google Scholar]
  7. French V., Bryant P. J., Bryant S. V. Pattern regulation in epimorphic fields. Science. 1976 Sep 10;193(4257):969–981. doi: 10.1126/science.948762. [DOI] [PubMed] [Google Scholar]
  8. Kornberg T., Sidén I., O'Farrell P., Simon M. The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell. 1985 Jan;40(1):45–53. doi: 10.1016/0092-8674(85)90307-1. [DOI] [PubMed] [Google Scholar]
  9. Lawrence P. A., Morata G. The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev Biol. 1977 Mar;56(1):40–51. doi: 10.1016/0012-1606(77)90153-1. [DOI] [PubMed] [Google Scholar]
  10. Lewis E. B. A gene complex controlling segmentation in Drosophila. Nature. 1978 Dec 7;276(5688):565–570. doi: 10.1038/276565a0. [DOI] [PubMed] [Google Scholar]
  11. Meinhardt H. Hierarchical inductions of cell states: a model for segmentation in Drosophila. J Cell Sci Suppl. 1986;4:357–381. doi: 10.1242/jcs.1986.supplement_4.20. [DOI] [PubMed] [Google Scholar]
  12. Morata G., Lawrence P. A. Anterior and posterior compartments in the head of Drosophila. Nature. 1978 Aug 3;274(5670):473–474. doi: 10.1038/274473a0. [DOI] [PubMed] [Google Scholar]
  13. Morata G., Lawrence P. A. Development of the eye-antenna imaginal disc of Drosophila. Dev Biol. 1979 Jun;70(2):355–371. doi: 10.1016/0012-1606(79)90033-2. [DOI] [PubMed] [Google Scholar]
  14. Nüsslein-Volhard C., Kluding H., Jürgens G. Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harb Symp Quant Biol. 1985;50:145–154. doi: 10.1101/sqb.1985.050.01.020. [DOI] [PubMed] [Google Scholar]
  15. Orenic T., Chidsey J., Holmgren R. Cell and cubitus interruptus dominant: two segment polarity genes on the fourth chromosome in Drosophila. Dev Biol. 1987 Nov;124(1):50–56. doi: 10.1016/0012-1606(87)90458-1. [DOI] [PubMed] [Google Scholar]
  16. Postlethwait J. H., Schneiderman H. A. Pattern formation and determination in the antenna of the homoeotic mutant Antennapedia of Drosophila melanogaster. Dev Biol. 1971 Aug;25(4):606–640. doi: 10.1016/0012-1606(71)90008-x. [DOI] [PubMed] [Google Scholar]
  17. Rijsewijk F., Schuermann M., Wagenaar E., Parren P., Weigel D., Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987 Aug 14;50(4):649–657. doi: 10.1016/0092-8674(87)90038-9. [DOI] [PubMed] [Google Scholar]
  18. Wieschaus E., Nöthiger R. The role of the transformer genes in the development of genitalia and analia of Drosophila melanogaster. Dev Biol. 1982 Apr;90(2):320–334. doi: 10.1016/0012-1606(82)90381-5. [DOI] [PubMed] [Google Scholar]
  19. Wieschaus E., Riggleman R. Autonomous requirements for the segment polarity gene armadillo during Drosophila embryogenesis. Cell. 1987 Apr 24;49(2):177–184. doi: 10.1016/0092-8674(87)90558-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES