Abstract
Escherichia coli K12 strain χ342LD requires two mutations in the bgl (β-glucosidase) operon, bglR(0) -> bglR(+) and excision of IS103 from within bglF, in order to utilize salicin. In growing cells the two mutations occur at rates of 4 X 10(-8) per cell division and <2 X 10(-12) per cell division, respectively. In 2-3-week-old colonies on MacConkey salicin plates the double mutants occur at frequencies of 10(-8) per cell, yet the rate of an unselected mutation, resistance to valine, is unaffected. The two mutations occur sequentially. Colonies that are 8-12 days old contain from 1% to about 10% IS103 excision mutants, from which the Sal(+) secondary bglR(0) -> bglR(+) mutants arise. It is shown that the excision mutants are not advantageous within colonies; thus, they must result from a burst of independent excisions late in the life of the colony. Excision of IS103 occurs only on medium containing salicin, despite the fact that the excision itself confers no detectable selective advantage and serves only to create the potential for a secondary selectively advantageous mutation.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barsomian G., Lessie T. G. Replicon fusions promoted by insertion sequences on Pseudomonas cepacia plasmid pTGL6. Mol Gen Genet. 1986 Aug;204(2):273–280. doi: 10.1007/BF00425509. [DOI] [PubMed] [Google Scholar]
- Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
- Ciampi M. S., Schmid M. B., Roth J. R. Transposon Tn10 provides a promoter for transcription of adjacent sequences. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5016–5020. doi: 10.1073/pnas.79.16.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall B. G., Betts P. W. Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli. Genetics. 1987 Mar;115(3):431–439. doi: 10.1093/genetics/115.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall B. G. Chromosomal mutation for citrate utilization by Escherichia coli K-12. J Bacteriol. 1982 Jul;151(1):269–273. doi: 10.1128/jb.151.1.269-273.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall B. G., Clarke N. D. Regulation of newly evolved enzymes. III Evolution of the ebg repressor during selection for enhanced lactase activity. Genetics. 1977 Feb;85(2):193–201. doi: 10.1093/genetics/85.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartl D. L. Evolution and tinkering: the molecular genetics of bacterial adaption. Prog Clin Biol Res. 1986;218:161–175. [PubMed] [Google Scholar]
- Hartl D. L., Medhora M., Green L., Dykhuizen D. E. The evolution of DNA sequences in Escherichia coli. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):191–204. doi: 10.1098/rstb.1986.0001. [DOI] [PubMed] [Google Scholar]
- Jordan E., Saedler H., Starlinger P. O0 and strong-polar mutations in the gal operon are insertions. Mol Gen Genet. 1968;102(4):353–363. doi: 10.1007/BF00433726. [DOI] [PubMed] [Google Scholar]
- Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahadevan S., Reynolds A. E., Wright A. Positive and negative regulation of the bgl operon in Escherichia coli. J Bacteriol. 1987 Jun;169(6):2570–2578. doi: 10.1128/jb.169.6.2570-2578.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. D., Dykhuizen D. E., Green L., Hartl D. L. Specific deletion occurring in the directed evolution of 6-phosphogluconate dehydrogenase in Escherichia coli. Genetics. 1984 Dec;108(4):765–772. doi: 10.1093/genetics/108.4.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. D., Dykhuizen D. E., Hartl D. L. Fitness effects of a deletion mutation increasing transcription of the 6-phosphogluconate dehydrogenase gene in Escherichia coli. Mol Biol Evol. 1988 Nov;5(6):691–703. doi: 10.1093/oxfordjournals.molbev.a040522. [DOI] [PubMed] [Google Scholar]
- Parker L. L., Hall B. G. A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization. Genetics. 1988 Jul;119(3):485–490. doi: 10.1093/genetics/119.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad I., Schaefler S. Regulation of the beta-glucoside system in Escherchia coli K-12. J Bacteriol. 1974 Nov;120(2):638–650. doi: 10.1128/jb.120.2.638-650.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prentki P., Teter B., Chandler M., Galas D. J. Functional promoters created by the insertion of transposable element IS1. J Mol Biol. 1986 Oct 5;191(3):383–393. doi: 10.1016/0022-2836(86)90134-8. [DOI] [PubMed] [Google Scholar]
- RYAN F. J., RUDNER R., NAGATA T., KITANI Y. Bacterial mutation and the synthesis of macromolecules. Z Vererbungsl. 1959;90(1):148–158. doi: 10.1007/BF00888580. [DOI] [PubMed] [Google Scholar]
- Ryan F. J. Spontaneous Mutation in Non-Dividing Bacteria. Genetics. 1955 Sep;40(5):726–738. doi: 10.1093/genetics/40.5.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saedler H., Besemer J., Kemper B., Rosenwirth B., Starlinger P. Insertion mutations in the control region of the Gal operon of E. coli. I. Biological characterization of the mutations. Mol Gen Genet. 1972;115(3):258–265. doi: 10.1007/BF00268889. [DOI] [PubMed] [Google Scholar]
- Saedler H., Cornelis G., Cullum J., Schumacher B., Sommer H. IS1-mediated DNA rearrangements. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):93–98. doi: 10.1101/sqb.1981.045.01.017. [DOI] [PubMed] [Google Scholar]
- Scordilis G. E., Ree H., Lessie T. G. Identification of transposable elements which activate gene expression in Pseudomonas cepacia. J Bacteriol. 1987 Jan;169(1):8–13. doi: 10.1128/jb.169.1.8-13.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro J. A. Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J Mol Biol. 1969 Feb 28;40(1):93–105. doi: 10.1016/0022-2836(69)90298-8. [DOI] [PubMed] [Google Scholar]
- Shapiro J. A. Observations on the formation of clones containing araB-lacZ cistron fusions. Mol Gen Genet. 1984;194(1-2):79–90. doi: 10.1007/BF00383501. [DOI] [PubMed] [Google Scholar]
- Stokes H. W., Hall B. G. Topological repression of gene activity by a transposable element. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6115–6119. doi: 10.1073/pnas.81.19.6115. [DOI] [PMC free article] [PubMed] [Google Scholar]