Skip to main content
Genetics logoLink to Genetics
. 1988 Dec;120(4):909–922. doi: 10.1093/genetics/120.4.909

Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

E F Summers 1, V A Letts 1, P McGraw 1, S A Henry 1
PMCID: PMC1203583  PMID: 3066687

Abstract

Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audubert F., Vance D. E. Pitfalls and problems in studies on the methylation of phosphatidylethanolamine. J Biol Chem. 1983 Sep 10;258(17):10695–10701. [PubMed] [Google Scholar]
  2. Bailis A. M., Poole M. A., Carman G. M., Henry S. A. The membrane-associated enzyme phosphatidylserine synthase is regulated at the level of mRNA abundance. Mol Cell Biol. 1987 Jan;7(1):167–176. doi: 10.1128/mcb.7.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Culbertson M. R., Henry S. A. Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics. 1975 May;80(1):23–40. doi: 10.1093/genetics/80.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donahue T. F., Henry S. A. Inositol Mutants of SACCHAROMYCES CEREVISIAE: Mapping the ino1 Locus and Characterizing Alleles of the ino1, ino2 and ino4 Loci. Genetics. 1981 Jul;98(3):491–503. doi: 10.1093/genetics/98.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donahue T. F., Henry S. A. myo-Inositol-1-phosphate synthase. Characteristics of the enzyme and identification of its structural gene in yeast. J Biol Chem. 1981 Jul 10;256(13):7077–7085. [PubMed] [Google Scholar]
  6. Fried H. M., Warner J. R. Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci U S A. 1981 Jan;78(1):238–242. doi: 10.1073/pnas.78.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenberg M. L., Goldwasser P., Henry S. A. Characterization of a yeast regulatory mutant constitutive for synthesis of inositol-1-phosphate synthase. Mol Gen Genet. 1982;186(2):157–163. doi: 10.1007/BF00331845. [DOI] [PubMed] [Google Scholar]
  8. Greenberg M. L., Klig L. S., Letts V. A., Loewy B. S., Henry S. A. Yeast mutant defective in phosphatidylcholine synthesis. J Bacteriol. 1983 Feb;153(2):791–799. doi: 10.1128/jb.153.2.791-799.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenberg M. L., Reiner B., Henry S. A. Regulatory mutations of inositol biosynthesis in yeast: isolation of inositol-excreting mutants. Genetics. 1982 Jan;100(1):19–33. doi: 10.1093/genetics/100.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henry S. A., Atkinson K. D., Kolat A. I., Culbertson M. R. Growth and metabolism of inositol-starved Saccharomyces cerevisiae. J Bacteriol. 1977 Apr;130(1):472–484. doi: 10.1128/jb.130.1.472-484.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henry S. A., Klig L. S., Loewy B. S. The genetic regulation and coordination of biosynthetic pathways in yeast: amino acid and phospholipid synthesis. Annu Rev Genet. 1984;18:207–231. doi: 10.1146/annurev.ge.18.120184.001231. [DOI] [PubMed] [Google Scholar]
  12. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klig L. S., Homann M. J., Carman G. M., Henry S. A. Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: pleiotropically constitutive opi1 mutant. J Bacteriol. 1985 Jun;162(3):1135–1141. doi: 10.1128/jb.162.3.1135-1141.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klig L. S., Homann M. J., Kohlwein S. D., Kelley M. J., Henry S. A., Carman G. M. Saccharomyces cerevisiae mutant with a partial defect in the synthesis of CDP-diacylglycerol and altered regulation of phospholipid biosynthesis. J Bacteriol. 1988 Apr;170(4):1878–1886. doi: 10.1128/jb.170.4.1878-1886.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kodaki T., Yamashita S. Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes. J Biol Chem. 1987 Nov 15;262(32):15428–15435. [PubMed] [Google Scholar]
  16. Kovác L., Gbelská I., Poliachová V., Subík J., Kovácová V. Membrane mutants: a yeast mutant with a lesion in phosphatidylserine biosynthesis. Eur J Biochem. 1980 Oct;111(2):491–501. doi: 10.1111/j.1432-1033.1980.tb04965.x. [DOI] [PubMed] [Google Scholar]
  17. Letts V. A., Dawes I. W. Mutations affecting lipid biosynthesis of Saccharomyces cerevisiae: isolation of ethanolamine auxotrophs [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):976–977. doi: 10.1042/bst0070976. [DOI] [PubMed] [Google Scholar]
  18. Letts V. A., Henry S. A. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae. J Bacteriol. 1985 Aug;163(2):560–567. doi: 10.1128/jb.163.2.560-567.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lindegren G., Hwang Y. L., Oshima Y., Lindegren C. C. Genetical mutants induced by ethyl methanesulfonate in Saccharomyces. Can J Genet Cytol. 1965 Sep;7(3):491–499. doi: 10.1139/g65-064. [DOI] [PubMed] [Google Scholar]
  20. Loewy B. S., Henry S. A. The INO2 and INO4 loci of Saccharomyces cerevisiae are pleiotropic regulatory genes. Mol Cell Biol. 1984 Nov;4(11):2479–2485. doi: 10.1128/mcb.4.11.2479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ridgway N. D., Vance D. E. Purification of phosphatidylethanolamine N-methyltransferase from rat liver. J Biol Chem. 1987 Dec 15;262(35):17231–17239. [PubMed] [Google Scholar]
  23. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  24. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  25. Rozek C. E., Davidson N. Drosophila has one myosin heavy-chain gene with three developmentally regulated transcripts. Cell. 1983 Jan;32(1):23–34. doi: 10.1016/0092-8674(83)90493-2. [DOI] [PubMed] [Google Scholar]
  26. Scarborough G. A., Nyc J. F. Methylation of ethanolamine phosphatides by microsomes from normal and mutant strains of Neurospora crassa. J Biol Chem. 1967 Jan 25;242(2):238–242. [PubMed] [Google Scholar]
  27. Steiner M. R., Lester R. L. In vitro studies of phospholipid biosynthesis in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Feb 21;260(2):222–243. doi: 10.1016/0005-2760(72)90035-5. [DOI] [PubMed] [Google Scholar]
  28. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Waechter C. J., Lester R. L. Differential regulation of the N-methyl transferases responsible for phosphatidylcholine synthesis in Saccharomyces cerevisiae. Arch Biochem Biophys. 1973 Sep;158(1):401–410. doi: 10.1016/0003-9861(73)90637-1. [DOI] [PubMed] [Google Scholar]
  30. Waechter C. J., Lester R. L. Regulation of phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1971 Mar;105(3):837–843. doi: 10.1128/jb.105.3.837-843.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamashita S., Oshima A. Regulation of phosphatidylethanolamine methyltransferase level by myo-inositol in Saccaromyces cerevisiae. Eur J Biochem. 1980 Mar;104(2):611–616. doi: 10.1111/j.1432-1033.1980.tb04465.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES