Skip to main content
Genetics logoLink to Genetics
. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185

Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps

E S Lander 1, D Botstein 1
PMCID: PMC1203601  PMID: 2563713

Abstract

The advent of complete genetic linkage maps consisting of codominant DNA markers [typically restriction fragment length polymorphisms (RFLPs)] has stimulated interest in the systematic genetic dissection of discrete Mendelian factors underlying quantitative traits in experimental organisms. We describe here a set of analytical methods that modify and extend the classical theory for mapping such quantitative trait loci (QTLs). These include: (i) a method of identifying promising crosses for QTL mapping by exploiting a classical formula of SEWALL WRIGHT; (ii) a method (interval mapping) for exploiting the full power of RFLP linkage maps by adapting the approach of LOD score analysis used in human genetics, to obtain accurate estimates of the genetic location and phenotypic effect of QTLs; and (iii) a method (selective genotyping) that allows a substantial reduction in the number of progeny that need to be scored with the DNA markers. In addition to the exposition of the methods, explicit graphs are provided that allow experimental geneticists to estimate, in any particular case, the number of progeny required to map QTLs underlying a quantitative trait.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
  2. Castle W. E. AN IMPROVED METHOD OF ESTIMATING THE NUMBER OF GENETIC FACTORS CONCERNED IN CASES OF BLENDING INHERITANCE. Science. 1921 Sep 9;54(1393):223–223. doi: 10.1126/science.54.1393.223. [DOI] [PubMed] [Google Scholar]
  3. Coyne J. A., Charlesworth B. Location of an X-linked factor causing sterility in male hybrids of Drosophila simulans and D. mauritiana. Heredity (Edinb) 1986 Oct;57(Pt 2):243–246. doi: 10.1038/hdy.1986.114. [DOI] [PubMed] [Google Scholar]
  4. East E M. Studies on Size Inheritance in Nicotiana. Genetics. 1916 Mar;1(2):164–176. doi: 10.1093/genetics/1.2.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edwards M. D., Stuber C. W., Wendel J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. doi: 10.1093/genetics/116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elston R. C., Stewart J. The analysis of quantitative traits for simple genetic models from parental, F 1 and backcross data. Genetics. 1973 Apr;73(4):695–711. doi: 10.1093/genetics/73.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haldane J B, Waddington C H. Inbreeding and Linkage. Genetics. 1931 Jul;16(4):357–374. doi: 10.1093/genetics/16.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kalter H. The Inheritance of Susceptibility to the Teratogenic Action of Cortisone in Mice. Genetics. 1954 Mar;39(2):185–196. doi: 10.1093/genetics/39.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lander E. S., Botstein D. Mapping complex genetic traits in humans: new methods using a complete RFLP linkage map. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):49–62. doi: 10.1101/sqb.1986.051.01.007. [DOI] [PubMed] [Google Scholar]
  10. Lander E. S., Botstein D. Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7353–7357. doi: 10.1073/pnas.83.19.7353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MORTON N. E. Sequential tests for the detection of linkage. Am J Hum Genet. 1955 Sep;7(3):277–318. [PMC free article] [PubMed] [Google Scholar]
  12. Malkinson A. M., Beer D. S. Major effect on susceptibility to urethan-induced pulmonary adenoma by a single gene in BALB/cBy mice. J Natl Cancer Inst. 1983 May;70(5):931–936. [PubMed] [Google Scholar]
  13. Paigen B., Morrow A., Brandon C., Mitchell D., Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985 Oct;57(1):65–73. doi: 10.1016/0021-9150(85)90138-8. [DOI] [PubMed] [Google Scholar]
  14. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  15. Prochazka M., Leiter E. H., Serreze D. V., Coleman D. L. Three recessive loci required for insulin-dependent diabetes in nonobese diabetic mice. Science. 1987 Jul 17;237(4812):286–289. doi: 10.1126/science.2885918. [DOI] [PubMed] [Google Scholar]
  16. Rick C. M. Potential genetic resources in tomato species: clues from observations in native habitats. Basic Life Sci. 1973;2:255–269. doi: 10.1007/978-1-4684-2880-3_17. [DOI] [PubMed] [Google Scholar]
  17. Shire J. G. Genes, hormones and behavioural variation. Eugen Soc Symp. 1968;4:194–205. [PubMed] [Google Scholar]
  18. Stewart J., Elston R. C. Biometrical genetics with one or two loci: the inheritance of physiological characters in mice. Genetics. 1973 Apr;73(4):675–693. doi: 10.1093/genetics/73.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tanase H., Suzuki Y., Ooshima A., Yamori Y., Okamoto K. Genetic analysis of blood pressure in spontaneously hypertensive rats. Jpn Circ J. 1970 Dec;34(12):1197–1212. doi: 10.1253/jcj.34.1197. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES