Skip to main content
Genetics logoLink to Genetics
. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89

Molecular Genetic Variation in the Centromeric Region of the X Chromosome in Three Drosophila Ananassae Populations. I. Contrasts between the Vermilion and Forked Loci

W Stephan 1, C H Langley 1
PMCID: PMC1203608  PMID: 2563714

Abstract

We have surveyed three natural populations of Drosophila ananassae for restriction map variation at the forked (f) and vermilion (v) loci, using 6-cutter restriction enzymes. Both loci are located in the centromeric region of the X chromosome. Two major conclusions can be drawn from the data. First, we found strong evidence for population subdivision, i.e., significant differences in the frequency distributions of polymorphisms and/or haplotypes between the Burma, India, and Brazil populations. Secondly, the pattern of DNA sequence variation between the two loci is unexpectedly different. The level of nucleotide variation in the v locus region is reduced (relative to f), especially in the Burma population. Furthermore, in contrast to v, we found no insertions/deletions larger than 700 bp and no significant linkage disequilibrium at f. The genetic differentiation among subpopulations can readily be attributed to restricted migration as the predominant evolutionary force. According to population genetics theory, the differences in DNA polymorphisms between the two loci are in qualitative agreement with the hypothesis that recombination is reduced in the v locus region (``centromere effect'') but not at f. In order to test this hypothesis directly, we determined the cytogenetic positions of several loci in the centromeric region by in situ hybridization and found by comparison with the genetic map that recombination at v is indeed very low, much lower than at f.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquadro C. F., Desse S. F., Bland M. M., Langley C. H., Laurie-Ahlberg C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics. 1986 Dec;114(4):1165–1190. doi: 10.1093/genetics/114.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aquadro C. F., Lado K. M., Noon W. A. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beadle G. W. A Possible Influence of the Spindle Fibre on Crossing-Over in Drosophila. Proc Natl Acad Sci U S A. 1932 Feb;18(2):160–165. doi: 10.1073/pnas.18.2.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bingham P. M., Levis R., Rubin G. M. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell. 1981 Sep;25(3):693–704. doi: 10.1016/0092-8674(81)90176-8. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B., Langley C. H., Stephan W. The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics. 1986 Apr;112(4):947–962. doi: 10.1093/genetics/112.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engels W. R. Estimating genetic divergence and genetic variability with restriction endonucleases. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6329–6333. doi: 10.1073/pnas.78.10.6329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jeffreys A. J., Wilson V., Thein S. L. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
  9. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  10. Langer-Safer P. R., Levine M., Ward D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4381–4385. doi: 10.1073/pnas.79.14.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Langley C. H., Montgomery E., Quattlebaum W. F. Restriction map variation in the Adh region of Drosophila. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5631–5635. doi: 10.1073/pnas.79.18.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mather K. Crossing over and Heterochromatin in the X Chromosome of Drosophila Melanogaster. Genetics. 1939 Apr;24(3):413–435. doi: 10.1093/genetics/24.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miyashita N., Langley C. H. Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics. 1988 Sep;120(1):199–212. doi: 10.1093/genetics/120.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montgomery E. A., Langley C. H. Transposable Elements in Mendelian Populations. II. Distribution of Three COPIA-like Elements in a Natural Population of DROSOPHILA MELANOGASTER. Genetics. 1983 Jul;104(3):473–483. doi: 10.1093/genetics/104.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Searles L. L., Voelker R. A. Molecular characterization of the Drosophila vermilion locus and its suppressible alleles. Proc Natl Acad Sci U S A. 1986 Jan;83(2):404–408. doi: 10.1073/pnas.83.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shrimpton A. E., Montgomery E. A., Langley C. H. OM Mutations in DROSOPHILA ANANASSAE Are Linked to Insertions of a Transposable Element. Genetics. 1986 Sep;114(1):125–135. doi: 10.1093/genetics/114.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES