Skip to main content
Genetics logoLink to Genetics
. 1989 Feb;121(2):213–222. doi: 10.1093/genetics/121.2.213

Mechanisms of Mutagenesis by Chloroacetaldehyde

J S Jacobsen 1, C P Perkins 1, J T Callahan 1, K Sambamurti 1, M Z Humayun 1
PMCID: PMC1203611  PMID: 2659432

Abstract

A number of bifunctional chemical mutagens induce exocyclic DNA lesions. For example, 2-chloroacetaldehyde (CAA), a metabolite of vinyl chloride, readily reacts with single-stranded DNA to predominantly form etheno lesions. Here, we report on in vivo mutagenesis caused by CAA treatment of DNA in vitro. These experiments used partially duplex phage M13AB28 replicative form DNA in which a part of the lacZ gene sequence was held in single-stranded form to direct reaction with CAA. CAA-treated partial duplex DNA was transfected into Escherichia coli, and the induced base changes were defined by DNA sequencing. These experiments suggested that CAA treatment induced mutations at cytosines, much less efficiently at adenines, but not at guanines or thymines. Among mutations targeted to cytosine, 80% were C-to-T transitions and 20% were C-to-A transversions. Application of a post-labeling method detected dose-dependent formation of ethenoadenine and ethenocytosine in CAA treated DNA. These data indicate that ethenocytosine is a highly efficient mutagen with properties suggestive of a non-instructional DNA lesion in vivo. Paradoxically, ethenoadenines are efficiently bypassed by a mechanism which appears to be largely nonmutagenic.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbin A., Bartsch H., Leconte P., Radman M. Studies on the miscoding properties of 1,N6-ethenoadenine and 3,N4-ethenocytosine, DNA reaction products of vinyl chloride metabolites, during in vitro DNA synthesis. Nucleic Acids Res. 1981 Jan 24;9(2):375–387. doi: 10.1093/nar/9.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrio J. R., Secrist J. A., 3rd, Leonard N. J. Fluorescent adenosine and cytidine derivatives. Biochem Biophys Res Commun. 1972 Jan 31;46(2):597–604. doi: 10.1016/s0006-291x(72)80181-5. [DOI] [PubMed] [Google Scholar]
  3. Bartsch H. The role of cyclic nucleic acid base adducts in carcinogenesis and mutagenesis. IARC Sci Publ. 1986;(70):3–14. [PubMed] [Google Scholar]
  4. Basu A. K., Niedernhofer L. J., Essigmann J. M. Deoxyhexanucleotide containing a vinyl chloride induced DNA lesion, 1,N6-ethenoadenine: synthesis, physical characterization, and incorporation into a duplex bacteriophage M13 genome as part of an amber codon. Biochemistry. 1987 Sep 8;26(18):5626–5635. doi: 10.1021/bi00392a007. [DOI] [PubMed] [Google Scholar]
  5. Biernat J., Ciesiołka J., Górnicki P., Adamiak R. W., Kryzosiak W. J., Wiewiórowski M. New observations concerning the chloroacetaldehyde reaction with some tRNA constituents. Stable intermediates, kinetics and selectivity of the reaction. Nucleic Acids Res. 1978 Mar;5(3):789–804. doi: 10.1093/nar/5.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gronenborn B., Messing J. Methylation of single-stranded DNA in vitro introduces new restriction endonuclease cleavage sites. Nature. 1978 Mar 23;272(5651):375–377. doi: 10.1038/272375a0. [DOI] [PubMed] [Google Scholar]
  7. Hall J. A., Saffhill R., Green T., Hathway D. E. The induction of errors during in vitro DNA synthesis following chloroacetaldehyde-treatment of poly(dA-dT) and poly(dC-dG) templates. Carcinogenesis. 1981;2(2):141–146. doi: 10.1093/carcin/2.2.141. [DOI] [PubMed] [Google Scholar]
  8. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  9. Hollstein M., Nair J., Bartsch H., Bochner B., Ames B. N. Detection of DNA base damage by 32P-postlabelling: TLC separation of 5'-deoxynucleoside monophosphates. IARC Sci Publ. 1986;(70):437–448. [PubMed] [Google Scholar]
  10. Jacobsen J. S., Refolo L. M., Conley M. P., Sambamurti K., Humayun M. Z. DNA replication-blocking properties of adducts formed by aflatoxin B1-2,3-dichloride and aflatoxin B1-2,3-oxide. Mutat Res. 1987 Jul;179(1):89–101. doi: 10.1016/0027-5107(87)90044-3. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A. Mutational specificity of depurination. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1494–1498. doi: 10.1073/pnas.81.5.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuśmierek J. T., Singer B. Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 1. Reaction products. Biochemistry. 1982 Oct 26;21(22):5717–5722. doi: 10.1021/bi00265a050. [DOI] [PubMed] [Google Scholar]
  13. LeClerc J. E., Istock N. L., Saran B. R., Allen R., Jr Sequence analysis of ultraviolet-induced mutations in M13lacZ hybrid phage DNA. J Mol Biol. 1984 Dec 5;180(2):217–237. doi: 10.1016/s0022-2836(84)80001-7. [DOI] [PubMed] [Google Scholar]
  14. Leonard N. J. Etheno-substituted nucleotides and coenzymes: fluorescence and biological activity. CRC Crit Rev Biochem. 1984;15(2):125–199. doi: 10.3109/10409238409102299. [DOI] [PubMed] [Google Scholar]
  15. Loeb L. A. Apurinic sites as mutagenic intermediates. Cell. 1985 Mar;40(3):483–484. doi: 10.1016/0092-8674(85)90191-6. [DOI] [PubMed] [Google Scholar]
  16. McCann J., Simmon V., Streitwieser D., Ames B. N. Mutagenicity of chloroacetaldehyde, a possible metabolic product of 1,2-dichloroethane (ethylene dichloride), chloroethanol (ethylene chlorohydrin), vinyl chloride, and cyclophosphamide. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3190–3193. doi: 10.1073/pnas.72.8.3190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  18. Rabkin S. D., Strauss B. S. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. J Mol Biol. 1984 Sep 25;178(3):569–594. doi: 10.1016/0022-2836(84)90239-0. [DOI] [PubMed] [Google Scholar]
  19. Reddy M. V., Gupta R. C., Randerath E., Randerath K. 32P-postlabeling test for covalent DNA binding of chemicals in vivo: application to a variety of aromatic carcinogens and methylating agents. Carcinogenesis. 1984 Feb;5(2):231–243. doi: 10.1093/carcin/5.2.231. [DOI] [PubMed] [Google Scholar]
  20. Refolo L. M., Bennett C. B., Humayun M. Z. Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride. J Mol Biol. 1987 Feb 20;193(4):609–636. doi: 10.1016/0022-2836(87)90344-5. [DOI] [PubMed] [Google Scholar]
  21. Revich G. G., Beattie K. L. Utilization of 1,N6-etheno-2'-deoxyadenosine 5'-triphosphate during DNA synthesis on natural templates, catalyzed by DNA polymerase I of Escherichia coli. Carcinogenesis. 1986 Sep;7(9):1569–1576. doi: 10.1093/carcin/7.9.1569. [DOI] [PubMed] [Google Scholar]
  22. Singer B., Kuśmierek J. T., Fraenkel-Conrat H. In vitro discrimination of replicases acting on carcinogen-modified polynucleotide templates. Proc Natl Acad Sci U S A. 1983 Feb;80(4):969–972. doi: 10.1073/pnas.80.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith A. J. DNA sequence analysis by primed synthesis. Methods Enzymol. 1980;65(1):560–580. doi: 10.1016/s0076-6879(80)65060-5. [DOI] [PubMed] [Google Scholar]
  24. Spengler S., Singer B. Transcriptional errors and ambiguity resulting from the presence of 1,N6-ethenoadenosine or 3,N4-ethenocytidine in polyribonucleotides. Nucleic Acids Res. 1981 Jan 24;9(2):365–373. doi: 10.1093/nar/9.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES