Skip to main content
Genetics logoLink to Genetics
. 1989 Mar;121(3):423–431. doi: 10.1093/genetics/121.3.423

Is103, a New Insertion Element in Escherichia Coli: Characterization and Distribution in Natural Populations

B G Hall 1, L L Parker 1, P W Betts 1, R F DuBose 1, S A Sawyer 1, D L Hartl 1
PMCID: PMC1203630  PMID: 2541046

Abstract

IS103 is a previously unknown insertion sequence found in Escherichia coli K12. We have sequenced IS103 and find that it is a 1441-bp element that consists of a 1395-bp core flanked by imperfect 23-bp inverted repeats. IS103 causes a 6-bp duplication of the target sequence into which it inserts. There is a single copy of IS103 present in wild-type E. coli K12 strain HfrC. In strain (χ)342 and its descendents there are two additional copies, one of which is located within the bglF gene. IS103 is capable of excising from within bglF and restoring function of that gene. IS103 exhibits 44% sequence identity with IS3, suggesting that the two insertion sequences are probably derived from a common ancestor. We have examined the distribution of IS103 in the chromosomes and plasmids of the ECOR collection of natural isolates of E. coli. IS103 is found in 36 of the 71 strains examined, and it strongly tends to inhabit plasmids rather than chromosomes. Comparison of the observed distribution of IS103 with distributions predicted by nine different models for the regulation of transposition according to copy number and of the effects of copy number on fitness suggest that transposition of IS103 is strongly regulated and that it has only minor effects on fitness. The strong clustering of IS103 within one phylogenetic subgroup of the E. coli population despite its presence on plasmids suggests that plasmids tend to remain within closely related strains and that transfer to distantly related strains is inhibited.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akroyd J., Barton B., Lund P., Maynard Smith S., Sultana K., Symonds N. Mapping and properties of the gam and sot genes of phage mu: their possible roles in recombination. Cold Spring Harb Symp Quant Biol. 1984;49:261–266. doi: 10.1101/sqb.1984.049.01.030. [DOI] [PubMed] [Google Scholar]
  2. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dykhuizen D. E., Sawyer S. A., Green L., Miller R. D., Hartl D. L. Joint distribution of insertion elements IS4 and IS5 in natural isolates of Escherichia coli. Genetics. 1985 Oct;111(2):219–231. doi: 10.1093/genetics/111.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Green L., Miller R. D., Dykhuizen D. E., Hartl D. L. Distribution of DNA insertion element IS5 in natural isolates of Escherichia coli. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4500–4504. doi: 10.1073/pnas.81.14.4500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall B. G. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics. 1988 Dec;120(4):887–897. doi: 10.1093/genetics/120.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall B. G., Betts P. W. Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli. Genetics. 1987 Mar;115(3):431–439. doi: 10.1093/genetics/115.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall B. G., Betts P. W., Kricker M. Maintenance of the cellobiose utilization genes of Escherichia coli in a cryptic state. Mol Biol Evol. 1986 Sep;3(5):389–402. doi: 10.1093/oxfordjournals.molbev.a040406. [DOI] [PubMed] [Google Scholar]
  8. Hartl D. L., Medhora M., Green L., Dykhuizen D. E. The evolution of DNA sequences in Escherichia coli. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):191–204. doi: 10.1098/rstb.1986.0001. [DOI] [PubMed] [Google Scholar]
  9. Mahadevan S., Reynolds A. E., Wright A. Positive and negative regulation of the bgl operon in Escherichia coli. J Bacteriol. 1987 Jun;169(6):2570–2578. doi: 10.1128/jb.169.6.2570-2578.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matsutani S., Ohtsubo H., Maeda Y., Ohtsubo E. Isolation and characterization of IS elements repeated in the bacterial chromosome. J Mol Biol. 1987 Aug 5;196(3):445–455. doi: 10.1016/0022-2836(87)90023-4. [DOI] [PubMed] [Google Scholar]
  11. Raleigh E. A., Kleckner N. Multiple IS10 rearrangements in Escherichia coli. J Mol Biol. 1984 Mar 15;173(4):437–461. doi: 10.1016/0022-2836(84)90390-5. [DOI] [PubMed] [Google Scholar]
  12. Sawyer S. A., Dykhuizen D. E., DuBose R. F., Green L., Mutangadura-Mhlanga T., Wolczyk D. F., Hartl D. L. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics. 1987 Jan;115(1):51–63. doi: 10.1093/genetics/115.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sawyer S., Hartl D. Distribution of transposable elements in prokaryotes. Theor Popul Biol. 1986 Aug;30(1):1–16. doi: 10.1016/0040-5809(86)90021-3. [DOI] [PubMed] [Google Scholar]
  14. Schnetz K., Toloczyki C., Rak B. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol. 1987 Jun;169(6):2579–2590. doi: 10.1128/jb.169.6.2579-2590.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schwartz E., Herberger C., Rak B. Second-element turn-on of gene expression in an IS1 insertion mutant. Mol Gen Genet. 1988 Feb;211(2):282–289. doi: 10.1007/BF00330605. [DOI] [PubMed] [Google Scholar]
  16. Schwartz E., Kröger M., Rak B. IS150: distribution, nucleotide sequence and phylogenetic relationships of a new E. coli insertion element. Nucleic Acids Res. 1988 Jul 25;16(14B):6789–6802. doi: 10.1093/nar/16.14.6789. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES