Skip to main content
Genetics logoLink to Genetics
. 1989 Mar;121(3):539–550. doi: 10.1093/genetics/121.3.539

Patterns of Variation in the Rdna Cistron within and among World Populations of a Mosquito, Aedes Albopictus (Skuse)

W C Black-IV 1, D K McLain 1, K S Rai 1
PMCID: PMC1203639  PMID: 2714638

Abstract

A restriction map was constructed of the ribosomal cistron in a mosquito, Aedes albopictus (Skuse). The 18s, 28s and nontranscribed spacer (NTS) regions were subcloned and used to probe for intraspecific variation. Seventeen populations were examined throughout the world range of the species. No variation was detected in the coding regions but extensive and continuous variation existed in the NTS. The NTS consisted of two nonhomologous regions. The first region contained multiple 190-bp AluI repeats nested within larger XhoI repeats of various sizes. There was a large number of length variants in the AluI repeat region of the NTS. No repeats were found in the second region and it gave rise to relatively fewer variants. An analysis of NTS diversity in individual mosquitoes indicated that most of the diversity arose at the population level. Discriminant analysis was performed on spacer types in individual mosquitoes and demonstrated that individuals within a population carried a unique set of spacers. In contrast with studies of the NTS in Drosophila populations, there seems to be little conservation of spacers in a population. The importance of molecular drive relative to drift and selection in the generation of local population differentiation is discussed.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black W. C., 4th, Ferrari J. A., Rai K. S., Sprenger D. Breeding structure of a colonising species: Aedes albopictus (Skuse) in the United States. Heredity (Edinb) 1988 Apr;60(Pt 2):173–181. doi: 10.1038/hdy.1988.29. [DOI] [PubMed] [Google Scholar]
  2. Black W. C., 4th, Rai K. S. Genome evolution in mosquitoes: intraspecific and interspecific variation in repetitive DNA amounts and organization. Genet Res. 1988 Jun;51(3):185–196. doi: 10.1017/s0016672300024289. [DOI] [PubMed] [Google Scholar]
  3. Coen E. S., Dover G. A. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell. 1983 Jul;33(3):849–855. doi: 10.1016/0092-8674(83)90027-2. [DOI] [PubMed] [Google Scholar]
  4. Coen E. S., Thoday J. M., Dover G. Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature. 1982 Feb 18;295(5850):564–568. doi: 10.1038/295564a0. [DOI] [PubMed] [Google Scholar]
  5. Coen E., Strachan T., Dover G. Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol. 1982 Jun 15;158(1):17–35. doi: 10.1016/0022-2836(82)90448-x. [DOI] [PubMed] [Google Scholar]
  6. McDonald P. T., Rai K. S. Correlation of linkage groups with chromosomes in the mosquito, Aedes aegypti. Genetics. 1970 Nov;66(3):475–485. doi: 10.1093/genetics/66.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nagylaki T. The evolution of multigene families under intrachromosomal gene conversion. Genetics. 1984 Mar;106(3):529–548. doi: 10.1093/genetics/106.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ohta T., Dover G. A. Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4079–4083. doi: 10.1073/pnas.80.13.4079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983 Apr;23(2):216–240. doi: 10.1016/0040-5809(83)90015-1. [DOI] [PubMed] [Google Scholar]
  10. Rogers S. O., Bendich A. J. Heritability and Variability in Ribosomal RNA Genes of Vicia faba. Genetics. 1987 Oct;117(2):285–295. doi: 10.1093/genetics/117.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Skuse D. H. Non-organic failure to thrive: a reappraisal. Arch Dis Child. 1985 Feb;60(2):173–178. doi: 10.1136/adc.60.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Slavicek J. M., Krider H. M. The organization and composition of the ribosomal RNA gene non-transcribed spacer of D. busckii is unique among the drosophilids. Genet Res. 1987 Dec;50(3):173–180. doi: 10.1017/s0016672300023661. [DOI] [PubMed] [Google Scholar]
  13. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  14. Sprenger D., Wuithiranyagool T. The discovery and distribution of Aedes albopictus in Harris County, Texas. J Am Mosq Control Assoc. 1986 Jun;2(2):217–219. [PubMed] [Google Scholar]
  15. Williams S. M., Furnier G. R., Fuog E., Strobeck C. Evolution of the ribosomal DNA spacers of Drosophila melanogaster: different patterns of variation on X and Y chromosomes. Genetics. 1987 Jun;116(2):225–232. doi: 10.1093/genetics/116.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wittens C. H., van Houtte H. J., Bollen E. C., Mol J. M. The imaging quality of angiodynography in the ilio-femoral tract. Eur J Vasc Surg. 1990 Dec;4(6):611–615. doi: 10.1016/s0950-821x(05)80817-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES