Skip to main content
Genetics logoLink to Genetics
. 1989 Mar;121(3):583–590. doi: 10.1093/genetics/121.3.583

Mapping RFLP Loci in Maize Using B-a Translocations

D Weber 1, T Helentjaris 1
PMCID: PMC1203642  PMID: 2565856

Abstract

Plants hypoploid for specific segments of each of the maize (Zea mays L.) chromosomes were generated using 24 different B-A translocations. Plants carrying each of the B-A translocations were crossed as male parents to inbreds, and sibling progeny hypoploid or not hypoploid for specific chromosomal segments were recovered. Genomic DNAs from the parents, hypoploid progeny, and nonhypoploid (euploid or hyperploid) progeny for each of these B-A translocations were digested with restriction enzymes, electrophoresed in agarose gels, blotted onto reusable nylon membranes, and probed with nick-translated, cloned DNA fragments which had been mapped previously by restriction fragment length polymorphism (RFLP) analysis to the chromosome involved in the B-A translocation. The chromosomal segment on our RFLP map which was uncovered by each of the - B-A translocations was determined. This work unequivocally identified the short and long arms of each chromosome on this map, and it also identified the region on each chromosome which contains the centromere. Because the breakpoints of the B-A translocations were previously known on the cytological and the conventional genetic maps, this study also allowed this RFLP map to be more highly correlated with these maps.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Helentjaris T., Weber D. F., Wright S. Use of monosomics to map cloned DNA fragments in maize. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6035–6039. doi: 10.1073/pnas.83.16.6035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rakha F. A., Robertson D. S. A New Technique for the Production of A-b Translocations and Their Use in Genetic Analysis. Genetics. 1970 Jun;65(2):223–240. doi: 10.1093/genetics/65.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Roman H. Mitotic Nondisjunction in the Case of Interchanges Involving the B-Type Chromosome in Maize. Genetics. 1947 Jul;32(4):391–409. doi: 10.1093/genetics/32.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES