Abstract
In the Segregation distorter (SD) system of meiotic drive, a minimum of two trans-acting elements [Sd and E(SD)] act in concert to cause a certain probability of dysfunction for sperm carrying a sensitive allele at the Responder (Rsp) target locus. By employing a number of insertional translocations of autosomal material into the long arm of the Y chromosome, Rsp can be mapped as the most proximal locus in the 2R heterochromatin as defined both by cytology and lethal complementation tests. Several of these insertional translocations result in the transposition of Rsp to the Y chromosome, where its sensitivity remains virtually unaltered. This argues that Rsp is separable from the second chromosome centromere, that its behavior does not depend on its gross chromosomal position, and that meiotic pairing of the chromosomes carrying the various SD elements is not a prerequisite for sperm dysfunction. Several other translocations apparently leave both resulting chromosomes at least partially sensitive to SD action, suggesting that Rsp is a large subdivisible genetic element. This view is compatible with observations published elsewhere that suggest that Rsp is a cytologically large region of highly repetitive AT-rich DNA. The availability of Y-linked copies of Rsp also allows the construction of SD males carrying two independently segregating Rsp alleles; this in turn allows the production of sperm with zero, one or two Rsp copies from the same male. Examination of the relative recovery proportions of progeny arising from these gametes suggests that sperm with two Rsp copies survive at much lower frequencies than would be predicted if each Rsp acted independently in causing sperm dysfunction. Possible explanations for such behavior are discussed.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brittnacher J. G., Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. III. Nature of enhancer of SD. Genetics. 1984 Jul;107(3):423–434. doi: 10.1093/genetics/107.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brittnacher J. G., Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. IV. Construction and analysis of free duplications for the Responder locus. Genetics. 1989 Apr;121(4):739–750. doi: 10.1093/genetics/121.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. Genetics. 1977 Jun;86(2 Pt 1):321–355. [PMC free article] [PubMed] [Google Scholar]
- Gatti M., Pimpinelli S., Santini G. Characterization of Drosophila heterochromatin. I. Staining and decondensation with Hoechst 33258 and quinacrine. Chromosoma. 1976 Sep 24;57(4):351–375. doi: 10.1007/BF00332160. [DOI] [PubMed] [Google Scholar]
- Hartl D. L. Genetic dissection of segregation distortion. I. Suicide combinations of SD genes. Genetics. 1974 Mar;76(3):477–486. doi: 10.1093/genetics/76.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilliker A. J. Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics. 1976 Aug;83(4):765–782. doi: 10.1093/genetics/83.4.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyttle T. W. Additive Effects of Multiple SEGREGATION DISTORTER ( SD) Chromosomes on Sperm Dysfunction in DROSOPHILA MELANOGASTER. Genetics. 1986 Sep;114(1):203–216. doi: 10.1093/genetics/114.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyttle T. W. Chromosomal Control of Fertility in DROSOPHILA MELANOGASTER . I. Rescue of T(Y;A)/bb Male Sterility by Chromosome Rearrangement. Genetics. 1984 Mar;106(3):423–434. doi: 10.1093/genetics/106.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pimpinelli S., Santini G., Gatti M. Characterization of Drosophila heterochromatin. II. C- and N-banding. Chromosoma. 1976 Sep 24;57(4):377–386. doi: 10.1007/BF00332161. [DOI] [PubMed] [Google Scholar]
- Sandler L, Hiraizumi Y, Sandler I. Meiotic Drive in Natural Populations of Drosophila Melanogaster. I. the Cytogenetic Basis of Segregation-Distortion. Genetics. 1959 Mar;44(2):233–250. doi: 10.1093/genetics/44.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuyasu K. T., Peacock W. J., Hardy R. W. Dynamics of spermiogenesis in Drosophila melanogaster. VII. Effects of segregation distorter (SD) chromosome. J Ultrastruct Res. 1977 Jan;58(1):96–107. doi: 10.1016/s0022-5320(77)80011-7. [DOI] [PubMed] [Google Scholar]
- Wu C. I., Lyttle T. W., Wu M. L., Lin G. F. Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell. 1988 Jul 15;54(2):179–189. doi: 10.1016/0092-8674(88)90550-8. [DOI] [PubMed] [Google Scholar]