Skip to main content
Genetics logoLink to Genetics
. 1989 Apr;121(4):827–838. doi: 10.1093/genetics/121.4.827

Genetics of Dominant Gibberellin-Insensitive Dwarfism in Maize

N P Harberd 1, M Freeling 1
PMCID: PMC1203666  PMID: 17246493

Abstract

D8 and Mpl1 are two dominant dwarfing mutations of maize. Although they differ in severity of dwarfism, both D8 and Mpl1 mutants are unresponsive to gibberellin (GA). Because of their close phenotypic resemblance to the recessive GA-sensitive dwarf mutants these dominant mutations may identify a gene whose product is involved in the reception of GA. With this possibility in mind we have studied the genetic properties of D8 and Mpl1. Both mutations map close to Adh1 on chromosome 1L. By marking normal and translocated 1L arms with different Adh1 electrophoretic mobility alleles, we investigated the effect of gene dosage on dominant dwarf phenotype. The results suggest that D8 and Mpl1 encode novel product functions and that these functions are relatively insensitive to the presence of the (presumed) wild-type product. Using X-ray induced chromosome breakage we created sectors of wild-type cells within D8 or Mpl1 tissue; these sectors were marked by the linked recessive lw mutation. The phenotypes of these sectors demonstrated that, at least in certain plant organs and tissues, dominant dwarfism can be an autonomous phenotype. These results are consistent with the hypothesis that the wild-type gene product acts as a GA receptor. The potential utility of dominant dwarf phenotype in plant developmental analysis is discussed, and possible mechanisms for the action of the D8 and Mpl1 mutations are considered.

Full Text

The Full Text of this article is available as a PDF (6.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennetzen J. L., Blevins W. E., Ellingboe A. H. Cell-autonomous recognition of the rust pathogen determines rp1-specified resistance in maize. Science. 1988 Jul 8;241(4862):208–210. doi: 10.1126/science.241.4862.208. [DOI] [PubMed] [Google Scholar]
  2. Birchler J. A. The cytogenetic localization of the alcohol dehydrogenase-1 locus in maize. Genetics. 1980 Mar;94(3):687–700. doi: 10.1093/genetics/94.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birchler J. A. The genetic basis of dosage compensation of alcohol dehydrogenase-1 in maize. Genetics. 1981 Mar;97(3-4):625–637. doi: 10.1093/genetics/97.3-4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonnett O. T. The Inflorescences of Maize. Science. 1954 Jul 16;120(3107):77–87. doi: 10.1126/science.120.3107.77. [DOI] [PubMed] [Google Scholar]
  5. Busson D., Gans M., Komitopoulou K., Masson M. Genetic Analysis of Three Dominant Female-Sterile Mutations Located on the X Chromosome of DROSOPHILA MELANOGASTER. Genetics. 1983 Oct;105(2):309–325. doi: 10.1093/genetics/105.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferguson E. L., Horvitz H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985 May;110(1):17–72. doi: 10.1093/genetics/110.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenwald I. S., Sternberg P. W., Horvitz H. R. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell. 1983 Sep;34(2):435–444. doi: 10.1016/0092-8674(83)90377-x. [DOI] [PubMed] [Google Scholar]
  8. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  9. Johri M. M., Coe E. H., Jr Clonal analysis of corn plant development. I. The development of the tassel and the ear shoot. Dev Biol. 1983 May;97(1):154–172. doi: 10.1016/0012-1606(83)90073-8. [DOI] [PubMed] [Google Scholar]
  10. Keith B., Rappaport L. In Vitro Gibberellin A(1) Binding in Zea mays L. Plant Physiol. 1987 Dec;85(4):934–941. doi: 10.1104/pp.85.4.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Park E. C., Horvitz H. R. Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics. 1986 Aug;113(4):821–852. doi: 10.1093/genetics/113.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Phinney B. O. GROWTH RESPONSE OF SINGLE-GENE DWARF MUTANTS IN MAIZE TO GIBBERELLIC ACID. Proc Natl Acad Sci U S A. 1956 Apr;42(4):185–189. doi: 10.1073/pnas.42.4.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Waterston R. H. A second informational suppressor, SUP-7 X, in Caenorhabditis elegans. Genetics. 1981 Feb;97(2):307–325. doi: 10.1093/genetics/97.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES