Skip to main content
Genetics logoLink to Genetics
. 1989 Jul;122(3):681–686. doi: 10.1093/genetics/122.3.681

Ancient Interlocus Exon Exchange in the History of the Hla-a Locus

A L Hughes 1, M Nei 1
PMCID: PMC1203741  PMID: 2759423

Abstract

The major histocompatibility complex (MHC) in humans and chimpanzees includes three classical class I loci, A, B and C, which encode glycoproteins expressed on the surface of all nucleated cells. There are also several nonclassical class I loci including E, which have more limited expression. By analyzing published sequences, we have shown that in exons 4 and 5, A locus alleles from both humans and chimpanzees are much more similar to E than to B or C alleles, whereas in exons 2 and 3 alleles from all three classical class I loci are much more similar to each other than any one is to E. We propose that some 20 million years ago, interlocus recombination led to the formation of a hybrid gene in which exons 2 and 3 were derived from the original A locus and exons 4 and 5 were derived from the E locus. The fact that such an ancient event can still be detected suggests that interlocus recombination is rare in the MHC and does not significantly contribute to MHC polymorphism, which is known to be extremely high. The present finding, however, supports Gilbert's idea that exons in a gene may occasionally be replaced by those from another gene in the evolutionary process.

Full Text

The Full Text of this article is available as a PDF (522.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gilbert W. Why genes in pieces? Nature. 1978 Feb 9;271(5645):501–501. doi: 10.1038/271501a0. [DOI] [PubMed] [Google Scholar]
  2. Güssow D., Rein R. S., Meijer I., de Hoog W., Seemann G. H., Hochstenbach F. M., Ploegh H. L. Isolation, expression, and the primary structure of HLA-Cw1 and HLA-Cw2 genes: evolutionary aspects. Immunogenetics. 1987;25(5):313–322. doi: 10.1007/BF00404424. [DOI] [PubMed] [Google Scholar]
  3. Holmes N., Parham P. Exon shuffling in vivo can generate novel HLA class I molecules. EMBO J. 1985 Nov;4(11):2849–2854. doi: 10.1002/j.1460-2075.1985.tb04013.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hughes A. L., Nei M. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci U S A. 1989 Feb;86(3):958–962. doi: 10.1073/pnas.86.3.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Klein J., Figueroa F. Evolution of the major histocompatibility complex. Crit Rev Immunol. 1986;6(4):295–386. [PubMed] [Google Scholar]
  6. Koller B. H., Geraghty D. E., Shimizu Y., DeMars R., Orr H. T. HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. J Immunol. 1988 Aug 1;141(3):897–904. [PubMed] [Google Scholar]
  7. Koller B. H., Orr H. T. Cloning and complete sequence of an HLA-A2 gene: analysis of two HLA-A alleles at the nucleotide level. J Immunol. 1985 Apr;134(4):2727–2733. [PubMed] [Google Scholar]
  8. Kottmann A. H., Seemann G. H., Guessow H. D., Roos M. H. DNA sequence of the coding region of the HLA-B44 gene. Immunogenetics. 1986;23(6):396–400. doi: 10.1007/BF00372673. [DOI] [PubMed] [Google Scholar]
  9. Mayer W. E., Jonker M., Klein D., Ivanyi P., van Seventer G., Klein J. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J. 1988 Sep;7(9):2765–2774. doi: 10.1002/j.1460-2075.1988.tb03131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mellor A. L. Molecular genetics of class I genes in the mammalian major histocompatibility complex. Oxf Surv Eukaryot Genes. 1986;3:95–140. [PubMed] [Google Scholar]
  11. N'Guyen C., Sodoyer R., Trucy J., Strachan T., Jordan B. R. The HLA-AW24 gene: sequence, surroundings and comparison with the HLA-A2 and HLA-A3 genes. Immunogenetics. 1985;21(5):479–489. doi: 10.1007/BF00430931. [DOI] [PubMed] [Google Scholar]
  12. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  13. Nei M., Stephens J. C., Saitou N. Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol Biol Evol. 1985 Jan;2(1):66–85. doi: 10.1093/oxfordjournals.molbev.a040333. [DOI] [PubMed] [Google Scholar]
  14. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  15. Südhof T. C., Goldstein J. L., Brown M. S., Russell D. W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228(4701):815–822. doi: 10.1126/science.2988123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Südhof T. C., Russell D. W., Goldstein J. L., Brown M. S., Sanchez-Pescador R., Bell G. I. Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science. 1985 May 17;228(4701):893–895. doi: 10.1126/science.3873704. [DOI] [PubMed] [Google Scholar]
  17. Watts S., Vogel J. M., Harriman W. D., Itoh T., Stauss H. J., Goodenow R. S. DNA sequence analysis of the C3H H-2Kk and H-2Dk loci. Evolutionary relationships to H-2 genes from four other mouse strains. J Immunol. 1987 Dec 1;139(11):3878–3885. [PubMed] [Google Scholar]
  18. Weiss E. H., Mellor A., Golden L., Fahrner K., Simpson E., Hurst J., Flavell R. A. The structure of a mutant H-2 gene suggests that the generation of polymorphism in H-2 genes may occur by gene conversion-like events. Nature. 1983 Feb 24;301(5902):671–674. doi: 10.1038/301671a0. [DOI] [PubMed] [Google Scholar]
  19. Zemmour J., Ennis P. D., Parham P., Dupont B. Comparison of the structure of HLA-Bw47 to HLA-B13 and its relationship to 21-hydroxylase deficiency. Immunogenetics. 1988;27(4):281–287. doi: 10.1007/BF00376123. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES