Skip to main content
Genetics logoLink to Genetics
. 1989 Jul;122(3):713–717. doi: 10.1093/genetics/122.3.713

Can Molecular Imprinting Explain Heterozygote Deficiency and Hybrid Vigor?

R Chakraborty 1
PMCID: PMC1203745  PMID: 2759426

Abstract

Molecular imprinting, the phenomenon of differential expressions of a gene based on whether it is paternally or maternally derived, has been noted in mice, humans, and other nonmammalian organisms. Effects of differential imprinting are important not only in the study of the manifestation of deleterious genes; they have important evolutionary implications as well. It is shown here that molecular imprinting may mimic observations that are often construed to be due to hybrid vigor and/or inbreeding depression. Furthermore, if a locus undergoes differential imprinting, it also yields observed genotypic proportions which mimic heterozygote deficiency in the population without the aid of natural selection.

Full Text

The Full Text of this article is available as a PDF (456.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cattanach B. M., Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature. 1985 Jun 6;315(6019):496–498. doi: 10.1038/315496a0. [DOI] [PubMed] [Google Scholar]
  2. Cattanach B. M. Parental origin effects in mice. J Embryol Exp Morphol. 1986 Oct;97 (Suppl):137–150. [PubMed] [Google Scholar]
  3. Erickson R. P. Chromosomal imprinting and the parent transmission specific variation in expressivity of Huntington disease. Am J Hum Genet. 1985 Jul;37(4):827–829. [PMC free article] [PubMed] [Google Scholar]
  4. Foltz D. W. Segregation and linkage studies of allozyme loci in pair crosses of the oyster Crassostrea virginica. Biochem Genet. 1986 Dec;24(11-12):941–956. doi: 10.1007/BF00554530. [DOI] [PubMed] [Google Scholar]
  5. Harding A. E. Genetic aspects of autosomal dominant late onset cerebellar ataxia. J Med Genet. 1981 Dec;18(6):436–441. doi: 10.1136/jmg.18.6.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harper P. S. Congenital myotonic dystrophy in Britain. II. Genetic basis. Arch Dis Child. 1975 Jul;50(7):514–521. doi: 10.1136/adc.50.7.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McGrath J., Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984 May;37(1):179–183. doi: 10.1016/0092-8674(84)90313-1. [DOI] [PubMed] [Google Scholar]
  8. Myers R. H., Cupples L. A., Schoenfeld M., D'Agostino R. B., Terrin N. C., Goldmakher N., Wolf P. A. Maternal factors in onset of Huntington disease. Am J Hum Genet. 1985 May;37(3):511–523. [PMC free article] [PubMed] [Google Scholar]
  9. Reik W., Collick A., Norris M. L., Barton S. C., Surani M. A. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature. 1987 Jul 16;328(6127):248–251. doi: 10.1038/328248a0. [DOI] [PubMed] [Google Scholar]
  10. Sapienza C., Peterson A. C., Rossant J., Balling R. Degree of methylation of transgenes is dependent on gamete of origin. Nature. 1987 Jul 16;328(6127):251–254. doi: 10.1038/328251a0. [DOI] [PubMed] [Google Scholar]
  11. Searle A. G., Beechey C. V. Complementation studies with mouse translocations. Cytogenet Cell Genet. 1978;20(1-6):282–303. doi: 10.1159/000130859. [DOI] [PubMed] [Google Scholar]
  12. Searle A. G., Beechey C. V. Noncomplementation phenomena and their bearing on nondisjunctional effects. Basic Life Sci. 1985;36:363–376. doi: 10.1007/978-1-4613-2127-9_25. [DOI] [PubMed] [Google Scholar]
  13. Sharman G. B. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature. 1971 Mar 26;230(5291):231–232. doi: 10.1038/230231a0. [DOI] [PubMed] [Google Scholar]
  14. Signoret J., David J. C. DNA-ligase activity in axolotl early development: evidence for a multilevel regulation of gene expression. J Embryol Exp Morphol. 1986 Oct;97 (Suppl):85–95. [PubMed] [Google Scholar]
  15. Signoret J., Lefresne J., Vinson D., David J. C. Enzymes involved in DNA replication in the axolotl. II. Control of DNA ligase activity during very early development. Dev Biol. 1981 Oct 15;87(1):126–132. doi: 10.1016/0012-1606(81)90066-x. [DOI] [PubMed] [Google Scholar]
  16. Solter D. Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet. 1988;22:127–146. doi: 10.1146/annurev.ge.22.120188.001015. [DOI] [PubMed] [Google Scholar]
  17. Tourte Y., Kuligowski-Andres J., Barbier-Ramond C. Comportement différentiel des chromatines paternelles et maternelles au cours de l'embryogenèse d'une fougère: Le Marsilea. Eur J Cell Biol. 1980 Apr;21(1):28–36. [PubMed] [Google Scholar]
  18. Vadheim C. M., Rotter J. I., Maclaren N. K., Riley W. J., Anderson C. E. Preferential transmission of diabetic alleles within the HLA gene complex. N Engl J Med. 1986 Nov 20;315(21):1314–1318. doi: 10.1056/NEJM198611203152103. [DOI] [PubMed] [Google Scholar]
  19. Warram J. H., Krolewski A. S., Gottlieb M. S., Kahn C. R. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med. 1984 Jul 19;311(3):149–152. doi: 10.1056/NEJM198407193110304. [DOI] [PubMed] [Google Scholar]
  20. Whitt G. S., Philipp D. P., Childers W. F. Aberrant gene expression during the development of hybrid sunfishes (perciformes, teleostei). Differentiation. 1977 Oct 20;9(1-2):97–109. doi: 10.1111/j.1432-0436.1977.tb01523.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES