Abstract
We have cloned the B breakpoint in Drosophila melanogaster using DNA from a P-M-induced revertant of B, which has a P element inserted at the B breakpoint. The analysis of the B DNA reveals that there is a transposable element, B104, right at the breakpoint. This suggests that this element may have been involved in the generation of the B breakpoint and the associated tandem duplication. One possible mechanism to generate the B duplication is a recombination event between two B104 elements, one at 16A1 and the other at 16A7. DNA sequencing data of the junctions of the B104 element support this model. Four partial revertants of B are the result of insertions of transposable elements very close to the B breakpoint. This supports the hypothesis that the breakpoint is the cause of the B mutation. The clones from B were used to isolate wild-type clones from 16A1, the location of the Bar gene. Four rearrangement breakpoints associated with various Bar mutations map within a 37-kb region, suggesting that the Bar gene is very large.
Full Text
The Full Text of this article is available as a PDF (4.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bingham P. M., Levis R., Rubin G. M. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell. 1981 Sep;25(3):693–704. doi: 10.1016/0092-8674(81)90176-8. [DOI] [PubMed] [Google Scholar]
- Bridges C. B. THE BAR "GENE" A DUPLICATION. Science. 1936 Feb 28;83(2148):210–211. doi: 10.1126/science.83.2148.210. [DOI] [PubMed] [Google Scholar]
- Chia W., Howes G., Martin M., Meng Y. B., Moses K., Tsubota S. Molecular analysis of the yellow locus of Drosophila. EMBO J. 1986 Dec 20;5(13):3597–3605. doi: 10.1002/j.1460-2075.1986.tb04688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis P. S., Shen M. W., Judd B. H. Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc Natl Acad Sci U S A. 1987 Jan;84(1):174–178. doi: 10.1073/pnas.84.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frischer L. E., Hagen F. S., Garber R. L. An inversion that disrupts the Antennapedia gene causes abnormal structure and localization of RNAs. Cell. 1986 Dec 26;47(6):1017–1023. doi: 10.1016/0092-8674(86)90816-0. [DOI] [PubMed] [Google Scholar]
- GREEN M. M. Putative non-reciprocal crossing over in Drosophila melanogaster. Z Vererbungsl. 1959;90:375–384. doi: 10.1007/BF00888812. [DOI] [PubMed] [Google Scholar]
- Gelbart W. M., Chovnick A. Spontaneous unequal exchange in the rosy region of Drosophila melanogaster. Genetics. 1979 Jul;92(3):849–859. doi: 10.1093/genetics/92.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg M. L., Sheen J. Y., Gehring W. J., Green M. M. Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5017–5021. doi: 10.1073/pnas.80.16.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. M. The role of mobile DNA elements in unequal and intrachromosomal crossing-over in Drosophila melanogaster. Basic Life Sci. 1985;36:353–361. doi: 10.1007/978-1-4613-2127-9_24. [DOI] [PubMed] [Google Scholar]
- Haluska F. G., Tsujimoto Y., Croce C. M. Oncogene activation by chromosome translocation in human malignancy. Annu Rev Genet. 1987;21:321–345. doi: 10.1146/annurev.ge.21.120187.001541. [DOI] [PubMed] [Google Scholar]
- JUDD B. H. Formation of duplication-deficiency products by asymmetrical exchange within a complex locus of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1961 Apr 15;47:545–550. doi: 10.1073/pnas.47.4.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Judd B H. Studies on Some Position Pseudoalleles at the White Region in Drosophila Melanogaster. Genetics. 1959 Jan;44(1):34–42. doi: 10.1093/genetics/44.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
- Scherer G., Tschudi C., Perera J., Delius H., Pirrotta V. B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retroviruses. J Mol Biol. 1982 May 25;157(3):435–451. doi: 10.1016/0022-2836(82)90470-3. [DOI] [PubMed] [Google Scholar]
- Sturtevant A H. The Effects of Unequal Crossing over at the Bar Locus in Drosophila. Genetics. 1925 Mar;10(2):117–147. doi: 10.1093/genetics/10.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton E. Bar Eye in Drosophila Melanogaster: A Cytological Analysis of Some Mutations and Reverse Mutations. Genetics. 1943 Mar;28(2):97–107. doi: 10.1093/genetics/28.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsubota S. I., Fristrom J. W. Genetic and biochemical properties of revertants at the rudimentary locus in Drosophila melanogaster. Mol Gen Genet. 1981;183(2):270–276. doi: 10.1007/BF00270628. [DOI] [PubMed] [Google Scholar]
- Tsubota S., Ashburner M., Schedl P. P-element-induced control mutations at the r gene of Drosophila melanogaster. Mol Cell Biol. 1985 Oct;5(10):2567–2574. doi: 10.1128/mcb.5.10.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsubota S., Schedl P. Hybrid dysgenesis-induced revertants of insertions at the 5' end of the rudimentary gene in Drosophila melanogaster: transposon-induced control mutations. Genetics. 1986 Sep;114(1):165–182. doi: 10.1093/genetics/114.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voelker R. A., Greenleaf A. L., Gyurkovics H., Wisely G. B., Huang S. M., Searles L. L. Frequent Imprecise Excision among Reversions of a P Element-Caused Lethal Mutation in Drosophila. Genetics. 1984 Jun;107(2):279–294. doi: 10.1093/genetics/107.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]