Abstract
The t complex on chromosome 17 of the house mouse is an exceptional model for studying the genetic control of transmission ratio, gametogenesis, and embryogenesis. Partial haplotypes derived through rare recombination between a t haplotype and its wild-type homolog have been essential in the genetic analysis of these various properties of the t complex. A new partial t haplotype, which was derived from the complete t(w71) haplotype and which is called t(w71Jr1), was shown to have unexpected effects on tail length and unique recombination breakpoints. This haplotype, either when homozygous or when heterozygous with the progenitor t(w71) haplotype, produced short-tailed rather than normal-tailed mice on certain genetic backgrounds. Genetic analysis of this exceptional haplotype showed that the recombination breakpoints were different from those leading to any other partial t haplotype. Based on this haplotype, a model is proposed that accounts for genetic interactions between the brachyury locus (T), the t complex tail interaction (tct) locus, and their wild-type homolog(s) that determine tail length. An important part of this model is the hypothesis that the tct locus, which enhances the tail-shortening effect of T mutations, is in fact at least two, genetically separable genes with different genetic activities. Genetic analysis of parental and recombinant haplotypes also suggests that intrachromosomal recombination involving an inverted duplicated segment can account for the variable orientation of loci within an inverted duplication on wild-type homologs of the t haplotype.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alton A. K., Silver L. M., Artzt K., Bennett D. Molecular analysis of the genetic relationship of trans interacting factors at the T/t complex. Nature. 1980 Nov 27;288(5789):368–370. doi: 10.1038/288368a0. [DOI] [PubMed] [Google Scholar]
- Búcan M., Herrmann B. G., Frischauf A. M., Bautch V. L., Bode V., Silver L. M., Martin G. R., Lehrach H. Deletion and duplication of DNA sequences is associated with the embryonic lethal phenotype of the t9 complementation group of the mouse t complex. Genes Dev. 1987 Jun;1(4):376–385. doi: 10.1101/gad.1.4.376. [DOI] [PubMed] [Google Scholar]
- Erhart M. A., Phillips S. J., Nadeau J. H. Contrasting patterns of evolution in the proximal and distal regions of the mouse t complex. Curr Top Microbiol Immunol. 1988;137:70–76. doi: 10.1007/978-3-642-50059-6_11. [DOI] [PubMed] [Google Scholar]
- Herrmann B. G., Barlow D. P., Lehrach H. A large inverted duplication allows homologous recombination between chromosomes heterozygous for the proximal t complex inversion. Cell. 1987 Mar 13;48(5):813–825. doi: 10.1016/0092-8674(87)90078-x. [DOI] [PubMed] [Google Scholar]
- Justice M. J., Bode V. C. Induction of new mutations in a mouse t-haplotype using ethylnitrosourea mutagenesis. Genet Res. 1986 Jun;47(3):187–192. doi: 10.1017/s0016672300023119. [DOI] [PubMed] [Google Scholar]
- Jäck H. M., McDowell M., Steinberg C. M., Wabl M. Looping out and deletion mechanism for the immunoglobulin heavy-chain class switch. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1581–1585. doi: 10.1073/pnas.85.5.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyon M. F. Male sterility of the mouse t-complex is due to homozygosity of the distorter genes. Cell. 1986 Jan 31;44(2):357–363. doi: 10.1016/0092-8674(86)90770-1. [DOI] [PubMed] [Google Scholar]
- Lyon M. F. Transmission ratio distortion in mouse t-haplotypes is due to multiple distorter genes acting on a responder locus. Cell. 1984 Jun;37(2):621–628. doi: 10.1016/0092-8674(84)90393-3. [DOI] [PubMed] [Google Scholar]
- MacMurray A., Shin H. S. The antimorphic nature of the Tc allele at the mouse T locus. Genetics. 1988 Oct;120(2):545–550. doi: 10.1093/genetics/120.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadeau J. H. A glyoxalase-1 variant associated with the t-complex in house mice. Genetics. 1986 May;113(1):91–99. doi: 10.1093/genetics/113.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadeau J. H., Phillips S. J. The putative oncogene Pim-1 in the mouse: its linkage and variation among t haplotypes. Genetics. 1987 Nov;117(3):533–541. doi: 10.1093/genetics/117.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Röhme D., Fox H., Herrmann B., Frischauf A. M., Edström J. E., Mains P., Silver L. M., Lehrach H. Molecular clones of the mouse t complex derived from microdissected metaphase chromosomes. Cell. 1984 Mar;36(3):783–788. doi: 10.1016/0092-8674(84)90358-1. [DOI] [PubMed] [Google Scholar]
- Schimenti J., Cebra-Thomas J. A., Decker C. L., Islam S. D., Pilder S. H., Silver L. M. A candidate gene family for the mouse t complex responder (Tcr) locus responsible for haploid effects on sperm function. Cell. 1988 Oct 7;55(1):71–78. doi: 10.1016/0092-8674(88)90010-4. [DOI] [PubMed] [Google Scholar]
- Schimenti J., Vold L., Socolow D., Silver L. M. An unstable family of large DNA elements in the center of the mouse t complex. J Mol Biol. 1987 Apr 20;194(4):583–594. doi: 10.1016/0022-2836(87)90235-x. [DOI] [PubMed] [Google Scholar]
- Silver L. M. Mouse t haplotypes. Annu Rev Genet. 1985;19:179–208. doi: 10.1146/annurev.ge.19.120185.001143. [DOI] [PubMed] [Google Scholar]
- Styrna J., Klein J. Evidence for two regions in the mouse t complex controlling transmission ratios. Genet Res. 1981 Dec;38(3):315–325. doi: 10.1017/s0016672300020632. [DOI] [PubMed] [Google Scholar]
- Vojtísková M., Viklický V., Vorácová B., Lewis S. E., Gluecksohn-Waelsch S. The effects of a t-allele (tAE5) in the mouse on the lymphoid system and reproduction. J Embryol Exp Morphol. 1976 Oct;36(2):443–451. [PubMed] [Google Scholar]
- Winking H., Silver L. M. Characterization of a recombinant mouse T haplotype that expresses a dominant lethal maternal effect. Genetics. 1984 Dec;108(4):1013–1020. doi: 10.1093/genetics/108.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]