Skip to main content
Genetics logoLink to Genetics
. 1989 Sep;123(1):181–189. doi: 10.1093/genetics/123.1.181

Sexual Transmission of Transposed Activator Elements in Transgenic Tomatoes

F Belzile 1, M W Lassner 1, Y Tong 1, R Khush 1, J I Yoder 1
PMCID: PMC1203781  PMID: 17246510

Abstract

The transmission of transposed Ac elements in progeny derived by self-pollination of ten transformed tomato plants has been examined by Southern hybridization analysis. We show that six of these primary transformants have transmitted a transposed Ac to at least one progeny. One of the families was segregating for at least two different insertion events. In five of ten families, progeny were detected that contained a transposed Ac but no donor T-DNA sequences, indicating that a recombination event occurred between the original and new Ac insertion site. Somatic transposition of Ac as late as the R2 generation is evidenced. One family contained an empty donor site fragment but Ac was not detected in either the parent or progeny, indicating Ac was lost in this population early in regeneration. While four of ten families were segregating for aberrant phenotypes, there was no evidence that the mutated gene was linked to a transposed Ac.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B., Coupland G., Fedoroff N., Starlinger P., Schell J. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 1987 Jun;6(6):1547–1554. doi: 10.1002/j.1460-2075.1987.tb02399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker B., Schell J., Lörz H., Fedoroff N. Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4844–4848. doi: 10.1073/pnas.83.13.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen J., Greenblatt I. M., Dellaporta S. L. Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics. 1987 Sep;117(1):109–116. doi: 10.1093/genetics/117.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chomet P. S., Wessler S., Dellaporta S. L. Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J. 1987 Feb;6(2):295–302. doi: 10.1002/j.1460-2075.1987.tb04753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Geiser M., Weck E., Döring H. P., Werr W., Courage-Tebbe U., Tillmann E., Starlinger P. Genomic clones of a wild-type allele and a transposable element-induced mutant allele of the sucrose synthase gene of Zea mays L. EMBO J. 1982;1(11):1455–1460. doi: 10.1002/j.1460-2075.1982.tb01337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenblatt I. M. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, modulator, in maize. Genetics. 1984 Oct;108(2):471–485. doi: 10.1093/genetics/108.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
  9. Rick C. M., Yoder J. I. Classical and molecular genetics of tomato: highlights and perspectives. Annu Rev Genet. 1988;22:281–300. doi: 10.1146/annurev.ge.22.120188.001433. [DOI] [PubMed] [Google Scholar]
  10. Schwarz-Sommer Z., Gierl A., Cuypers H., Peterson P. A., Saedler H. Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J. 1985 Mar;4(3):591–597. doi: 10.1002/j.1460-2075.1985.tb03671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Van Sluys M. A., Tempé J., Fedoroff N. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 1987 Dec 20;6(13):3881–3889. doi: 10.1002/j.1460-2075.1987.tb02728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES