Abstract
Using the two subpopulation model, the expected numbers of segregating sites in a number of DNA sequences randomly sampled from a subdivided population were examined for several types of population subdivisions. It is shown that, in the case where the pattern of migration is symmetrical such as the finite island model, the expected number of segregating sites is independent of the migration rate when two or three DNA sequences are randomly sampled from the same subpopulation, but depends on the migration rate when more than three DNA sequences are sampled. It is also shown that the population subdivision can increase the amount of DNA polymorphism even in a subpopulation in some cases.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Griffiths R. C. Lines of descent in the diffusion approximation of neutral Wright-Fisher models. Theor Popul Biol. 1980 Feb;17(1):37–50. doi: 10.1016/0040-5809(80)90013-1. [DOI] [PubMed] [Google Scholar]
- Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
- Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M, Weiss G H. The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. Genetics. 1964 Apr;49(4):561–576. doi: 10.1093/genetics/49.4.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latter B. D. The island model of population differentiation: a general solution. Genetics. 1973 Jan;73(1):147–157. doi: 10.1093/genetics/73.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W. H. Distribution of nucleotide differences between two randomly chosen cistrons in a subdivided population: the finite island model. Theor Popul Biol. 1976 Dec;10(3):303–308. doi: 10.1016/0040-5809(76)90021-6. [DOI] [PubMed] [Google Scholar]
- Li W. H., Nei M. Drift variances of heterozygosity and genetic distance in transient states. Genet Res. 1975 Jun;25(3):229–248. doi: 10.1017/s0016672300015664. [DOI] [PubMed] [Google Scholar]
- Li W. H., Nei M. Persistence of common alleles in two related populations or species. Genetics. 1977 Aug;86(4):901–914. doi: 10.1093/genetics/86.4.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T. Effective number of alleles in a subdivided population. Theor Popul Biol. 1970 Nov;1(3):273–306. doi: 10.1016/0040-5809(70)90047-x. [DOI] [PubMed] [Google Scholar]
- Nei M., Feldman M. W. Identity of genes by descent within and between populations under mutation and migration pressures. Theor Popul Biol. 1972 Dec;3(4):460–465. doi: 10.1016/0040-5809(72)90017-2. [DOI] [PubMed] [Google Scholar]
- Slatkin M. The average number of sites separating DNA sequences drawn from a subdivided population. Theor Popul Biol. 1987 Aug;32(1):42–49. doi: 10.1016/0040-5809(87)90038-4. [DOI] [PubMed] [Google Scholar]
- Strobeck C. Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics. 1987 Sep;117(1):149–153. doi: 10.1093/genetics/117.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
- Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]