Abstract
Inheritance of alleles at 29 electrophoretically detected protein loci and one pigment locus (albinism) was analyzed in Xenopus laevis by backcrossing multiply heterozygous individuals generated by intersubspecies hybridization. Pairwise linkage tests revealed eight classical linkage groups. These groups have been provisionally numbered from 1 to 8 in an arbitrarily chosen order. Linkage group 1 includes ALB-2 (albumin), ADH-1 (alcohol dehydrogenase), NP (nucleoside phosphorylase), and a(p) (periodic albinism). Linkage group 2 contains ALB-1 and ADH-2, and probably is homeologous to group 1. Linkage group 3 comprises PEP-B (peptidase B), MPI-1 (mannosephosphate isomerase), SORD (sorbitol dehydrogenase), and mIDH-2 (mitochondrial isocitrate dehydrogenase). Linkage group 4 contains GPI-1 (glucosephosphate isomerase) and EST-4 (esterase 4). Linkage group 5 contains GPI-2 and PEP-D (peptidase D). Linkage group 6 comprises ACP-3 (acid phosphatase), sME (cytosolic malic enzyme), and GLO-2 (glyoxalase). Linkage group 7 consists of sSOD-1 (cytosolic superoxide dismutase), GPD-2 (glycerol-3-phosphate dehydrogenase), mME (mitochondrial malic enzyme), and the sex determining locus. Linkage group 8 includes FH (fumarate hydratase) and TRF (transferrin). Recombination frequencies between linked loci showed differences related to the genomic constitution (parental subspecies) and to the sex of the heterozygous parent. Independent assortment was observed between the duplicate ALB loci. This is true for the duplicate ADH, GLO, and MPI loci as well, supporting the view that these genes have been duplicated as part of a genome duplication that occurred in the evolutionary history of X. laevis. Comparative analysis of genetic maps reveals a possible conservation of several linkages from the Xenopus genome to the human genome.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker D., Green P., Knowlton R., Schumm J., Lander E., Oliphant A., Willard H., Akots G., Brown V., Gravius T. Genetic linkage map of human chromosome 7 with 63 DNA markers. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8006–8010. doi: 10.1073/pnas.84.22.8006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bürki E. The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis laevis, and their viable hybrid. Biochem Genet. 1985 Feb;23(1-2):73–88. doi: 10.1007/BF00499114. [DOI] [PubMed] [Google Scholar]
- Dunn L. C., Bennett D. Sex differences in recombination of linked genes in animals. Genet Res. 1967 Apr;9(2):211–220. doi: 10.1017/s0016672300010491. [DOI] [PubMed] [Google Scholar]
- Graf J. D., Fischberg M. Albumin evolution in polyploid species of the genus Xenopus. Biochem Genet. 1986 Dec;24(11-12):821–837. doi: 10.1007/BF00554522. [DOI] [PubMed] [Google Scholar]
- Graf J. D. Sex linkage of malic enzyme in Xenopus laevis. Experientia. 1989 Feb 15;45(2):194–196. doi: 10.1007/BF01954874. [DOI] [PubMed] [Google Scholar]
- Hoperskaya O. A. The development of animals homozygous for a mutation causing periodic albinism (ap) in Xenopus laevis. J Embryol Exp Morphol. 1975 Aug;34(1):253–264. [PubMed] [Google Scholar]
- Jeffreys A. J., Wilson V., Wood D., Simons J. P., Kay R. M., Williams J. G. Linkage of adult alpha- and beta-globin genes in X. laevis and gene duplication by tetraploidization. Cell. 1980 Sep;21(2):555–564. doi: 10.1016/0092-8674(80)90493-6. [DOI] [PubMed] [Google Scholar]
- Johnson K. R., Wright J. E., Jr, May B. Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics. 1987 Aug;116(4):579–591. doi: 10.1093/genetics/116.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller W. P. Diplotene chromosomes of Xenopus hybrid oocytes. Chromosoma. 1977 Feb 23;59(4):273–282. doi: 10.1007/BF00327969. [DOI] [PubMed] [Google Scholar]
- Müller W. P. The lampbrush chromosomes of Xenopus laevis (Daudin). Chromosoma. 1974;47(3):283–296. doi: 10.1007/BF00328862. [DOI] [PubMed] [Google Scholar]
- Robert J., Kobel H. R. Purification and characterization of cytoplasmic creatine kinase isozymes of Xenopus laevis. Biochem Genet. 1988 Oct;26(9-10):543–555. doi: 10.1007/BF02399600. [DOI] [PubMed] [Google Scholar]
- Schubiger J. L., Wahli W. Linkage arrangement in the vitellogenin gene family of Xenopus laevis as revealed by gene segregation analysis. Nucleic Acids Res. 1986 Nov 25;14(22):8723–8734. doi: 10.1093/nar/14.22.8723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stutz F., Spohr G. Isolation and characterization of sarcomeric actin genes expressed in Xenopus laevis embryos. J Mol Biol. 1986 Feb 5;187(3):349–361. doi: 10.1016/0022-2836(86)90438-9. [DOI] [PubMed] [Google Scholar]
- Thiébaud C. H., Fischberg M. DNA content in the genus Xenopus. Chromosoma. 1977 Feb 3;59(3):253–257. doi: 10.1007/BF00292781. [DOI] [PubMed] [Google Scholar]
- Tymowska J. A comparative study of the karyotypes of eight Xenopus species and subspecies possessing a 36-chromosome complement. Cytogenet Cell Genet. 1977;18(4):165–182. doi: 10.1159/000130761. [DOI] [PubMed] [Google Scholar]
- Tymowska J., Fischberg M. A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae). Cytogenet Cell Genet. 1982;34(1-2):149–157. doi: 10.1159/000131803. [DOI] [PubMed] [Google Scholar]
- Wesolowski M. H., Lyerla T. A. Alcohol dehydrogenase isozymes in the clawed frog, Xenopus laevis. Biochem Genet. 1983 Oct;21(9-10):1003–1017. doi: 10.1007/BF00483956. [DOI] [PubMed] [Google Scholar]
- Womack J. E. Comparative gene mapping: a valuable new tool for mammalian developmental studies. Dev Genet. 1987;8(4):281–293. doi: 10.1002/dvg.1020080410. [DOI] [PubMed] [Google Scholar]