Skip to main content
Genetics logoLink to Genetics
. 1989 Nov;123(3):441–454. doi: 10.1093/genetics/123.3.441

Selection and Neutrality in Lactose Operons of Escherichia Coli

A M Dean 1
PMCID: PMC1203816  PMID: 2513251

Abstract

The kinetics of the permeases and β-galactosidases of six lactose operons which had been transduced into a common genetic background from natural isolates of Escherichia coli were investigated. The fitnesses conferred by the operons were determined using chemostat competition experiments in which lactose was the sole growth-limiting factor. The cell wall is demonstrated to impose a resistance to the diffusion of galactosides at low substrate concentrations. A steady state model of the flux of lactose through the metabolic pathway (diffusion, uptake and hydrolysis) is shown to be proportional to fitness. This metabolic model is used to explain why an approximately twofold range in activity among the permease alleles confers a 13% range in fitness, whereas a similar range in activity among alleles of the β-galactosidase confers a 0.5% range in fitness. This metabolic model implies that selection need not be maximized when a resource is scarce.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Dabes J. N., Finn R. K., Welke C. R. Equations of substrate-limited growth: the case for blackman kinetics. Biotechnol Bioeng. 1973 Nov;15(6):1159–1177. doi: 10.1002/bit.260150613. [DOI] [PubMed] [Google Scholar]
  3. Dean A. M., Dykhuizen D. E., Hartl D. L. Fitness effects of amino acid replacements in the beta-galactosidase of Escherichia coli. Mol Biol Evol. 1988 Sep;5(5):469–485. doi: 10.1093/oxfordjournals.molbev.a040513. [DOI] [PubMed] [Google Scholar]
  4. Dykhuizen D. E., Dean A. M., Hartl D. L. Metabolic flux and fitness. Genetics. 1987 Jan;115(1):25–31. doi: 10.1093/genetics/115.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dykhuizen D. E., Hartl D. L. Functional effects of PGI allozymes in Escherichia coli. Genetics. 1983 Sep;105(1):1–18. doi: 10.1093/genetics/105.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dykhuizen D., Hartl D. L. Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics. 1980 Dec;96(4):801–817. doi: 10.1093/genetics/96.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dykhuizen D., Hartl D. Transport by the lactose permease of Escherichia coli as the basis of lactose killing. J Bacteriol. 1978 Sep;135(3):876–882. doi: 10.1128/jb.135.3.876-882.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghazi A., Shechter E. Lactose transport in Escherichia coli cells. Dependence of kinetic parameters on the transmembrane electrical potential difference. Biochim Biophys Acta. 1981 Jun 22;644(2):305–315. doi: 10.1016/0005-2736(81)90388-6. [DOI] [PubMed] [Google Scholar]
  9. Gillespie J. H. A general model to account for enzyme variation in natural populations. V. The SAS--CFF model. Theor Popul Biol. 1978 Aug;14(1):1–45. doi: 10.1016/0040-5809(78)90002-3. [DOI] [PubMed] [Google Scholar]
  10. Harris H. Enzyme polymorphisms in man. Proc R Soc Lond B Biol Sci. 1966 Mar 22;164(995):298–310. doi: 10.1098/rspb.1966.0032. [DOI] [PubMed] [Google Scholar]
  11. Hartl D. L., Dykhuizen D. E. Potential for selection among nearly neutral allozymes of 6-phosphogluconate dehydrogenase in Escherichia coli. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6344–6348. doi: 10.1073/pnas.78.10.6344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huber R. E., Kurz G., Wallenfels K. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. Biochemistry. 1976 May 4;15(9):1994–2001. doi: 10.1021/bi00654a029. [DOI] [PubMed] [Google Scholar]
  13. Huber R. E., Wallenfels K., Kurz G. The action of beta-galactosidase (Escherichia coli) on allolactose. Can J Biochem. 1975 Sep;53(9):1035–1038. doi: 10.1139/o75-142. [DOI] [PubMed] [Google Scholar]
  14. Inouye M. A three-dimensional molecular assembly model of a lipoprotein from the Escherichia coli outer membrane. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2396–2400. doi: 10.1073/pnas.71.6.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KOCH A. L. THE ROLE OF PERMEASE IN TRANSPORT. Biochim Biophys Acta. 1964 Jan 27;79:177–200. doi: 10.1016/0926-6577(64)90050-6. [DOI] [PubMed] [Google Scholar]
  16. Kaczorowski G. J., Robertson D. E., Kaback H. R. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+. Biochemistry. 1979 Aug 21;18(17):3697–3704. doi: 10.1021/bi00584a010. [DOI] [PubMed] [Google Scholar]
  17. Koch A. L., Wang C. H. How close to the theoretical diffusion limit do bacterial uptake systems function? Arch Microbiol. 1982 Feb;131(1):36–42. doi: 10.1007/BF00451496. [DOI] [PubMed] [Google Scholar]
  18. Langridge J. Mutation spectra and the neutrality of mutations. Aust J Biol Sci. 1974 Jun;27(3):309–319. doi: 10.1071/bi9740309. [DOI] [PubMed] [Google Scholar]
  19. Leive L. Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commun. 1965 Nov 22;21(4):290–296. doi: 10.1016/0006-291x(65)90191-9. [DOI] [PubMed] [Google Scholar]
  20. Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966 Aug;54(2):595–609. doi: 10.1093/genetics/54.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nikaido H., Rosenberg E. Y. Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. J Gen Physiol. 1981 Feb;77(2):121–135. doi: 10.1085/jgp.77.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Page M. G., West I. C. The kinetics of the beta-galactoside-proton symport of Escherichia coli. Biochem J. 1981 Jun 15;196(3):721–731. doi: 10.1042/bj1960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robertson D. E., Kaczorowski G. J., Garcia M. L., Kaback H. R. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry. 1980 Dec 9;19(25):5692–5702. doi: 10.1021/bi00566a005. [DOI] [PubMed] [Google Scholar]
  24. Steven A. C., Heggeler B., Müller R., Kistler J., Rosenbusch J. P. Ultrastructure of a periodic protein layer in the outer membrane of Escherichia coli. J Cell Biol. 1977 Feb;72(2):292–301. doi: 10.1083/jcb.72.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. West I. C., Page M. G. When is the outer membrane of Escherichia coli rate-limiting for uptake of galactosides? J Theor Biol. 1984 Sep 7;110(1):11–19. doi: 10.1016/s0022-5193(84)80011-9. [DOI] [PubMed] [Google Scholar]
  26. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
  27. Wright J. K., Riede I., Overath P. Lactose carrier protein of Escherichia coli: interaction with galactosides and protons. Biochemistry. 1981 Oct 27;20(22):6404–6415. doi: 10.1021/bi00525a019. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES