Skip to main content
Genetics logoLink to Genetics
. 1989 Dec;123(4):635–648. doi: 10.1093/genetics/123.4.635

DNA Sequence Analysis of Artificially Evolved Ebg Enzyme and Ebg Repressor Genes

B G Hall 1, P W Betts 1, J C Wootton 1
PMCID: PMC1203876  PMID: 2515108

Abstract

The ebg system has been used as a model to study the artificial selection of new catalytic functions of enzymes and of inducer specificities of repressors. A series of mutant enzymes with altered catalytic specificities were previously characterized biochemically as were the changes in inducer specificities of mutant, but fully functional, repressors. The wild type ebg operon has been sequenced, and the sequence differences of the mutant enzymes and repressors have been determined. We now report that, contrary to our previous understanding, ebg enzyme contains 180-kD α-subunits and 20-kD β-subunits, both of which are required for full activity. Mutations that dramatically affect substrate specificity and catalytic efficiency lie in two distinct regions, both well outside of the active site region. Mutations that affect inducer specificity of the ebg repressor lie within predicted sugar binding domains. Comparisons of the ebg β-galactosidase and repressor with homologous proteins of the Escherichia coli and Klebsiella pneumoniae lac operons, and with the galactose operon repressor, suggest that the ebg and lac operons diverged prior to the divergence of E. coli from Klebsiella. One case of a triple substitution as the consequence of a single event is reported, and the implications of that observation for mechanisms of spontaneous mutagenesis are discussed.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beardsley T. UK nutrition. Government chokes on report. Nature. 1983 Jul 14;304(5922):103–103. doi: 10.1038/304103b0. [DOI] [PubMed] [Google Scholar]
  2. Buvinger W. E., Riley M. Nucleotide sequence of Klebsiella pneumoniae lac genes. J Bacteriol. 1985 Sep;163(3):850–857. doi: 10.1128/jb.163.3.850-857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  4. Gall B. G., Hartl D. L. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics. 1975 Nov;81(3):427–435. doi: 10.1093/genetics/81.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gasc A. M., Sicard A. M., Claverys J. P. Repair of single- and multiple-substitution mismatches during recombination in Streptococcus pneumoniae. Genetics. 1989 Jan;121(1):29–36. doi: 10.1093/genetics/121.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Golding G. B., Glickman B. W. Sequence-directed mutagenesis: evidence from a phylogenetic history of human alpha-interferon genes. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8577–8581. doi: 10.1073/pnas.82.24.8577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golding G. B. Multiple substitutions create biased estimates of divergence times and small increases in the variance to mean ratio. Heredity (Edinb) 1987 Jun;58(Pt 3):331–339. doi: 10.1038/hdy.1987.59. [DOI] [PubMed] [Google Scholar]
  8. Hall B. G. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics. 1988 Dec;120(4):887–897. doi: 10.1093/genetics/120.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hall B. G. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry. 1981 Jul 7;20(14):4042–4049. doi: 10.1021/bi00517a015. [DOI] [PubMed] [Google Scholar]
  10. Hall B. G., Clarke N. D. Regulation of newly evolved enzymes. III Evolution of the ebg repressor during selection for enhanced lactase activity. Genetics. 1977 Feb;85(2):193–201. doi: 10.1093/genetics/85.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall B. G. Evolution of a regulated operon in the laboratory. Genetics. 1982 Jul-Aug;101(3-4):335–344. doi: 10.1093/genetics/101.3-4.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall B. G. Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebg) and evolved (ebg) enzymes. J Mol Biol. 1976 Oct 15;107(1):71–84. doi: 10.1016/s0022-2836(76)80018-6. [DOI] [PubMed] [Google Scholar]
  13. Hall B. G., Hartl D. L. Regulation of newly evolved enzymes. I. Selection of a novel lactase regulated by lactose in Escherichia coli. Genetics. 1974 Mar;76(3):391–400. doi: 10.1093/genetics/76.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hall B. G. Number of mutations required to evolve a new lactase function in Escherichia coli. J Bacteriol. 1977 Jan;129(1):540–543. doi: 10.1128/jb.129.1.540-543.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hall B. G. On the evolution of new metabolic functions in diploid organisms. Genetics. 1980 Dec;96(4):1007–1017. doi: 10.1093/genetics/96.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hall B. G. Transgalactosylation activity of ebg beta-galactosidase synthesizes allolactose from lactose. J Bacteriol. 1982 Apr;150(1):132–140. doi: 10.1128/jb.150.1.132-140.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hall B. G., Zuzel T. Evolution of a new enzymatic function by recombination within a gene. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3529–3533. doi: 10.1073/pnas.77.6.3529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hall B. G., Zuzel T. The ebg operon consists of at least two genes. J Bacteriol. 1980 Dec;144(3):1208–1211. doi: 10.1128/jb.144.3.1208-1211.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hampsey D. M., Ernst J. F., Stewart J. W., Sherman F. Multiple base-pair mutations in yeast. J Mol Biol. 1988 Jun 5;201(3):471–486. doi: 10.1016/0022-2836(88)90629-8. [DOI] [PubMed] [Google Scholar]
  20. Quiocho F. A., Vyas N. K. Novel stereospecificity of the L-arabinose-binding protein. Nature. 1984 Aug 2;310(5976):381–386. doi: 10.1038/310381a0. [DOI] [PubMed] [Google Scholar]
  21. Quiocho F. A., Vyas N. K., Sack J. S., Vyas M. N. Atomic protein structures reveal basic features of binding of sugars and ionic substrates, and calcium cation. Cold Spring Harb Symp Quant Biol. 1987;52:453–463. doi: 10.1101/sqb.1987.052.01.052. [DOI] [PubMed] [Google Scholar]
  22. Rolseth S. J., Fried V. A., Hall B. G. A mutant Ebg enzyme that converts lactose into an inducer of the lac operon. J Bacteriol. 1980 Jun;142(3):1036–1039. doi: 10.1128/jb.142.3.1036-1039.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sams C. F., Vyas N. K., Quiocho F. A., Matthews K. S. Predicted structure of the sugar-binding site of the lac repressor. Nature. 1984 Aug 2;310(5976):429–430. doi: 10.1038/310429a0. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  25. Stokes H. W., Betts P. W., Hall B. G. Sequence of the ebgA gene of Escherichia coli: comparison with the lacZ gene. Mol Biol Evol. 1985 Nov;2(6):469–477. doi: 10.1093/oxfordjournals.molbev.a040372. [DOI] [PubMed] [Google Scholar]
  26. Stokes H. W., Hall B. G. Sequence of the ebgR gene of Escherichia coli: evidence that the EBG and LAC operons are descended from a common ancestor. Mol Biol Evol. 1985 Nov;2(6):478–483. doi: 10.1093/oxfordjournals.molbev.a040373. [DOI] [PubMed] [Google Scholar]
  27. Vyas N. K., Vyas M. N., Quiocho F. A. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science. 1988 Dec 2;242(4883):1290–1295. doi: 10.1126/science.3057628. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES