Abstract
We have isolated a Paramecium tetraurelia mutant that divides slowly in daily reisolation cultures and repeats short clonal life spans after successive autogamies. Here we show, using breeding analysis, that a recessive mutation is responsible for the low fission rate and that this low rate is closely related to the short clonal life span. We conclude that a single pleiotropic gene controls these traits and have named it jumyo. In an attempt to further characterize the jumyo mutant, we have revealed that it has a culture life span similar to that of the wild-type cells and that, when mass cultured, it can divide as rapidly as wild-type cells. There was strong evidence that the mutant cells excreted into culture medium some substance that promotes their cell division. These findings may not only present supporting evidence for the hypothesis that the cellular life span is genetically programmed but also give a material basis for the study of the controlling mechanism of cell division in relation to the clonal life span.
Full Text
The Full Text of this article is available as a PDF (671.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aufderheide K. J., Schneller M. V. Phenotypes associated with early clonal death in Paramecium tetraurelia. Mech Ageing Dev. 1985 Nov;32(2-3):299–309. doi: 10.1016/0047-6374(85)90087-9. [DOI] [PubMed] [Google Scholar]
- Bleyman L. K., Simon E. M. Genetic control of maturity in Tetrahymena pyriformis. Genet Res. 1967 Dec;10(3):319–321. doi: 10.1017/s0016672300011083. [DOI] [PubMed] [Google Scholar]
- DIPPELL R. V. A temporary stain for Paramecium and other ciliate protozoa. Stain Technol. 1955 Mar;30(2):69–71. doi: 10.3109/10520295509113746. [DOI] [PubMed] [Google Scholar]
- Fok A. K., Allen R. D., Kaneshiro E. S. Axenic Paramecium caudatum. III. Biochemical and physiological changes with culture age. Eur J Cell Biol. 1981 Aug;25(1):193–201. [PubMed] [Google Scholar]
- Fok A. K., Paeste R. M. Lysosomal enzymes of Paramecium caudatum and Paramecium tetraurelia. Exp Cell Res. 1982 May;139(1):159–169. doi: 10.1016/0014-4827(82)90329-9. [DOI] [PubMed] [Google Scholar]
- Heifetz S. R., Smith-Sonneborn J. Nucleolar changes in aging and autogamous Paramecium tetraurelia. Mech Ageing Dev. 1981 Jul;16(3):255–263. doi: 10.1016/0047-6374(81)90101-9. [DOI] [PubMed] [Google Scholar]
- Myohara K., Hiwatashi K. Mutants of sexual maturity in Paramecium caudatum selected by erythromycin resistance. Genetics. 1978 Oct;90(2):227–241. doi: 10.1093/genetics/90.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norwood T. H., Hoehn H., Salk D., Martin G. M. Cellular aging in Werner's syndrome: a unique phenotype? J Invest Dermatol. 1979 Jul;73(1):92–96. doi: 10.1111/1523-1747.ep12532778. [DOI] [PubMed] [Google Scholar]
- Smith-Sonneborn J., Reed J. C. Calendar life-span versus fission life-span of Paramecium aurelia. J Gerontol. 1976 Jan;31(1):2–7. doi: 10.1093/geronj/31.1.2. [DOI] [PubMed] [Google Scholar]
- Takagi Y., Nobuoka T., Doi M. Clonal lifespan of Paramecium tetraurelia: effect of selection on its extension and use of fissions for its determination. J Cell Sci. 1987 Aug;88(Pt 1):129–138. doi: 10.1242/jcs.88.1.129. [DOI] [PubMed] [Google Scholar]
