Abstract
Two large experiments designed to detect allozyme-associated heterosis for growth rate in Drosophila melanogaster were performed. Heterosis associated with allozyme genotypes may be explained either by functional overdominance at the allozyme loci, or closely linked loci; or by genotypic correlations between allozyme loci and loci at which deleterious recessive alleles segregate. Such genotypic correlations would be favored by consanguineous mating, small effective population size, population mixing and strong natural or artificial selection. D. melanogaster is outbred, has large effective population size and there is little evidence for genotypic disequilibria. Therefore it would be unlikely to show allozyme heterosis due to genotypic correlations. In the first experiment I estimated the genotypic values of 97 replicated genotypes. In the second experiment, 500 individuals were raised in a fluctuating, stressful environment. In neither experiment was there any consistent evidence for allozyme heterosis in size or development rate, fluctuating asymmetry for size or in tendency to deviate from the population mean. In the first experiment, heterosis explained less than 5.6% of the genetic variance in growth characters. In the second, heterosis explained less than 0.1% of the phenotypic variance in growth characters. Outside of the molluscs, species which show allozyme heterosis have population structures or histories which tend to promote genotypic correlations. There is little evidence that functional overdominance is responsible for observations of allozyme-associated heterosis.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLISON A. C. POLYMORPHISM AND NATURAL SELECTION IN HUMAN POPULATIONS. Cold Spring Harb Symp Quant Biol. 1964;29:137–149. doi: 10.1101/sqb.1964.029.01.018. [DOI] [PubMed] [Google Scholar]
- Aquadro C. F., Desse S. F., Bland M. M., Langley C. H., Laurie-Ahlberg C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics. 1986 Dec;114(4):1165–1190. doi: 10.1093/genetics/114.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aquadro C. F., Lado K. M., Noon W. A. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. S. Population genetics of a sex-linked locus in Drosophila melanogaster I. Linkage disequilibrium and associative overdominance. Hereditas. 1977;85(2):169–198. doi: 10.1111/j.1601-5223.1977.tb00965.x. [DOI] [PubMed] [Google Scholar]
- Cochrane B. J., Richmond R. C. Studies of esterase-6 in Drosophila melanogaster. II. The genetics and frequency distributions of naturally occurring variants studied by electrophoretic and heat stability criteria. Genetics. 1979 Oct;93(2):461–478. doi: 10.1093/genetics/93.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eanes W. F. Genetic localization and sequential electrophoresis of glucose-6-phosphate dehydrogenase in Drosophila melanogaster. Biochem Genet. 1983 Aug;21(7-8):703–711. doi: 10.1007/BF00498917. [DOI] [PubMed] [Google Scholar]
- Eanes W. F., Hey J. IN VIVO Function of Rare G6pd Variants from Natural Populations of DROSOPHILA MELANOGASTER. Genetics. 1986 Jul;113(3):679–693. doi: 10.1093/genetics/113.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontdevila A., Mendez J., Ayala F. J., McDonald J. Maintenance of allozyme polymorphisms in experimental populations of Drosophila. Nature. 1975 May 8;255(5504):149–151. doi: 10.1038/255149a0. [DOI] [PubMed] [Google Scholar]
- Franklin I., Lewontin R. C. Is the gene the unit of selection? Genetics. 1970 Aug;65(4):707–734. doi: 10.1093/genetics/65.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie J. H. A general model to account for enzyme variation in natural populations. V. The SAS--CFF model. Theor Popul Biol. 1978 Aug;14(1):1–45. doi: 10.1016/0040-5809(78)90002-3. [DOI] [PubMed] [Google Scholar]
- HALDANE J. B. S. The association of characters as a result of inbreeding and linkage. Ann Eugen. 1949 Oct;15(1):15–23. doi: 10.1111/j.1469-1809.1949.tb02418.x. [DOI] [PubMed] [Google Scholar]
- Hall J. G., Wills C. Conditional overdominance at an alcohol dehydrogenase locus in yeast. Genetics. 1987 Nov;117(3):421–427. doi: 10.1093/genetics/117.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedrick P. W. Simulation of X-linked selection in Drosophila. Genetics. 1976 Jul;83(3 PT2):551–571. [PMC free article] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M., Aguadé M. Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proc Natl Acad Sci U S A. 1986 May;83(10):3562–3566. doi: 10.1073/pnas.83.10.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M. Assessment of variability within electromorphs of alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1980 Jun;95(2):467–475. doi: 10.1093/genetics/95.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langley C. H., Shrimpton A. E., Yamazaki T., Miyashita N., Matsuo Y., Aquadro C. F. Naturally occurring variation in the restriction map of the amy region of Drosophila melanogaster. Genetics. 1988 Jul;119(3):619–629. doi: 10.1093/genetics/119.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leary R. F., Allendorf F. W., Knudsen K. L. Developmental stability and enzyme heterozygosity in rainbow trout. Nature. 1983 Jan 6;301(5895):71–72. doi: 10.1038/301071a0. [DOI] [PubMed] [Google Scholar]
- Miyashita N., Langley C. H. Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics. 1988 Sep;120(1):199–212. doi: 10.1093/genetics/120.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ota T. Associative overdominance caused by linked detrimental mutations. Genet Res. 1971 Dec;18(3):277–286. [PubMed] [Google Scholar]
- Pierce B. A., Mitton J. B. Allozyme heterozygosity and growth in the tiger salamander, Ambystoma tigrinum. J Hered. 1982 Jul-Aug;73(4):250–253. doi: 10.1093/oxfordjournals.jhered.a109633. [DOI] [PubMed] [Google Scholar]
- Schaeffer S. W., Aquadro C. F., Langley C. H. Restriction-map variation in the Notch region of Drosophila melanogaster. Mol Biol Evol. 1988 Jan;5(1):30–40. doi: 10.1093/oxfordjournals.molbev.a040475. [DOI] [PubMed] [Google Scholar]
- Shereif N. A., Skibinski D. O. Association of allozyme heterozygosity and sternopleural chaetae number in Drosophila melanogaster. Genetica. 1988 Jun 30;76(3):209–217. doi: 10.1007/BF00140226. [DOI] [PubMed] [Google Scholar]
- Singh R. S., Rhomberg L. R. A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. II. Estimates of Heterozygosity and Patterns of Geographic Differentiation. Genetics. 1987 Oct;117(2):255–271. doi: 10.1093/genetics/117.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Thomson G. The effect of a selected locus on linked neutral loci. Genetics. 1977 Apr;85(4):753–788. doi: 10.1093/genetics/85.4.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trippa G., Loverre A., Catamo A. Thermostability studies for investigating non-electrophoretic polymorphic alleles in Drosophila melanogaster. Nature. 1976 Mar 4;260(5546):42–44. doi: 10.1038/260042a0. [DOI] [PubMed] [Google Scholar]
- Ward R. D., Sarfarazi M., Azimi-Garakani C., Beardmore J. A. Population genetics of polymorphisms in Cardiff newborn. Relationship between blood group and allozyme heterozygosity and birth weight. Hum Hered. 1985;35(3):171–177. doi: 10.1159/000153538. [DOI] [PubMed] [Google Scholar]
- Weir B. S., Cockerham C. C. Mixed self and random mating at two loci. Genet Res. 1973 Jun;21(3):247–262. doi: 10.1017/s0016672300013446. [DOI] [PubMed] [Google Scholar]
- Weir B. S., Cockerham C. C. Pedigree mating with two linked loci. Genetics. 1969 Apr;61(4):923–940. doi: 10.1093/genetics/61.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamazaki T., Kusakabe S., Tachida H., Ichinose M., Yoshimaru H., Matsuo Y., Mukai T. Reexamination of diversifying selection of polymorphic allozyme genes by using population cages in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5789–5792. doi: 10.1073/pnas.80.18.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamazaki T. Measurement of fitness at the esterase-5 locus in Drosophila pseudoobscura. Genetics. 1971 Apr;67(4):579–603. doi: 10.1093/genetics/67.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zouros E., Foltz D. W. The use of allelic isozyme variation for the study of heterosis. Isozymes Curr Top Biol Med Res. 1987;13:1–59. [PubMed] [Google Scholar]
- Zouros E. On the relation between heterozygosity and heterosis: an evaluation of the evidence from marine mollusks. Isozymes Curr Top Biol Med Res. 1987;15:255–270. [PubMed] [Google Scholar]