Skip to main content
Genetics logoLink to Genetics
. 1990 Jan;124(1):7–25. doi: 10.1093/genetics/124.1.7

Mechanisms of Gene Conversion in Saccharomyces Cerevisiae

H Roman 1, M M Ruzinski 1
PMCID: PMC1203911  PMID: 2407607

Abstract

In red-white sectored colonies of Saccharomyces cerevisiae, derived from mitotic cells grown to stationary phase and irradiated with a light dose of x-rays, all of the segregational products of gene conversion and crossing over can be ascertained. Approximately 80% of convertants are induced in G(1), the remaining 20% in G(2). Crossing over, in the amount of 20%, is found among G(1) convertants but most of the crossovers are delayed until G(2). About 20% of all sectored colonies had more than one genotype in one or the other sector, thus confirming the hypothesis that conversion also occurs in G(2). The principal primary event in G(2) conversion is a single DNA heteroduplex. It is suggested that the close contact that this implies carries over to G(2) when crossing over and a second round of conversion occurs.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borts R. H., Haber J. E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. doi: 10.1126/science.2820060. [DOI] [PubMed] [Google Scholar]
  2. Celenza J. L., Carlson M. Rearrangement of the genetic map of chromosome VII of Saccharomyces cerevisiae. Genetics. 1985 Apr;109(4):661–664. doi: 10.1093/genetics/109.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Egel R., Kohli J., Thuriaux P., Wolf K. Genetics of the fission yeast Schizosaccharomyces pombe. Annu Rev Genet. 1980;14:77–108. doi: 10.1146/annurev.ge.14.120180.000453. [DOI] [PubMed] [Google Scholar]
  4. Esposito M. S. Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4436–4440. doi: 10.1073/pnas.75.9.4436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Esposito R. E., Esposito M. S. Genetic recombination and commitment to meiosis in Saccharomyces. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3172–3176. doi: 10.1073/pnas.71.8.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fabre F., Boulet A., Roman H. Gene conversion at different points in the mitotic cycle of Saccharomyces cerevisiae. Mol Gen Genet. 1984;195(1-2):139–143. doi: 10.1007/BF00332736. [DOI] [PubMed] [Google Scholar]
  7. Fabre F. Induced intragenic recombination in yeast can occur during the G1 mitotic phase. Nature. 1978 Apr 27;272(5656):795–798. doi: 10.1038/272795a0. [DOI] [PubMed] [Google Scholar]
  8. Golin J. E., Tampe H. Coincident recombination during mitosis in saccharomyces: distance-dependent and -independent components. Genetics. 1988 Jul;119(3):541–547. doi: 10.1093/genetics/119.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iyengar G. A., Deka P. C., Kundu S. C., Sen S. K. DNA syntheses in course of meiotic development in Neurospora crassa. Genet Res. 1977 Feb;29(1):1–8. doi: 10.1017/s0016672300017067. [DOI] [PubMed] [Google Scholar]
  10. Judd S. R., Petes T. D. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics. 1988 Mar;118(3):401–410. doi: 10.1093/genetics/118.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lichten M., Borts R. H., Haber J. E. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics. 1987 Feb;115(2):233–246. doi: 10.1093/genetics/115.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mortimer R. K., Schild D., Contopoulou C. R., Kans J. A. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast. 1989 Sep-Oct;5(5):321–403. doi: 10.1002/yea.320050503. [DOI] [PubMed] [Google Scholar]
  14. Orr-Weaver T. L., Szostak J. W. Fungal recombination. Microbiol Rev. 1985 Mar;49(1):33–58. doi: 10.1128/mr.49.1.33-58.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Radding C. M. Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet. 1982;16:405–437. doi: 10.1146/annurev.ge.16.120182.002201. [DOI] [PubMed] [Google Scholar]
  17. Roman H., Fabre F. Gene conversion and associated reciprocal recombination are separable events in vegetative cells of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6912–6916. doi: 10.1073/pnas.80.22.6912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  19. Wildenberg J. The relation of mitotic recombination to DNA replication in yeast pedigrees. Genetics. 1970 Oct;66(2):291–304. doi: 10.1093/genetics/66.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES