Skip to main content
Genetics logoLink to Genetics
. 1990 Mar;124(3):687–699. doi: 10.1093/genetics/124.3.687

Interrelationships of Heterozygosity, Growth Rate and Heterozygote Deficiencies in the Coot Clam, Mulinia Lateralis

P M Gaffney 1, T M Scott 1, R K Koehn 1, W J Diehl 1
PMCID: PMC1203961  PMID: 2311919

Abstract

Allozyme surveys of marine invertebrates commonly report heterozygote deficiencies, a correlation between multiple locus heterozygosity and size, or both. Hypotheses advanced to account for these phenomena include inbreeding, null alleles, selection, spatial or temporal Wahlund effects, aneuploidy and molecular imprinting. Previous studies have been unable to clearly distinguish among these alternative hypotheses. This report analyzes a large data set (1906 individuals, 15 allozyme loci) from a single field collection of the coot clam Mulinia lateralis and demonstrates (1) significant heterozygote deficiencies at 13 of 15 loci, (2) a correlation between the magnitude of heterozygote deficiency at a locus and the effect of heterozygosity at that locus on shell length, and (3) a distribution of multilocus heterozygosity which deviates from that predicted by observed single-locus heterozygosities. A critical examination of the abovementioned hypotheses as sources of these findings rules out inbreeding, null alleles, aneuploidy, population mixing and imprinting as sole causes. The pooling of larval subpopulations subjected to varying degrees of selection, aneuploidy or imprinting could account for the patterns observed in this study.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allendorf F. W., Knudsen K. L., Blake G. M. Frequencies of null alleles at enzyme Loci in natural populations of ponderosa and red pine. Genetics. 1982 Mar;100(3):497–504. doi: 10.1093/genetics/100.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beacham T. D., Withler R. E. Heterozygosity and morphological variability of chum salmon (Oncorhynchus keta) in southern British Columbia. Heredity (Edinb) 1985 Jun;54(Pt 3):313–322. doi: 10.1038/hdy.1985.42. [DOI] [PubMed] [Google Scholar]
  3. Brown A. H., Feldman M. W., Nevo E. Multilocus Structure of Natural Populations of HORDEUM SPONTANEUM. Genetics. 1980 Oct;96(2):523–536. doi: 10.1093/genetics/96.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HALDANE J. B. S. The association of characters as a result of inbreeding and linkage. Ann Eugen. 1949 Oct;15(1):15–23. doi: 10.1111/j.1469-1809.1949.tb02418.x. [DOI] [PubMed] [Google Scholar]
  5. Koehn R. K., Diehl W. J., Scott T. M. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam, Mulinia lateralis. Genetics. 1988 Jan;118(1):121–130. doi: 10.1093/genetics/118.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Langley C. H., Voelker R. A., Brown A. J., Ohnishi S., Dickson B., Montgomery E. Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics. 1981 Sep;99(1):151–156. doi: 10.1093/genetics/99.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Strauss S. H. Heterosis at Allozyme Loci under Inbreeding and Crossbreeding in PINUS ATTENUATA. Genetics. 1986 May;113(1):115–134. doi: 10.1093/genetics/113.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Voelker R. A., Langley C. H., Brown A. J., Ohnishi S., Dickson B., Montgomery E., Smith S. C. Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1091–1095. doi: 10.1073/pnas.77.2.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ward R. D., Beardmore J. A. Protein variation in the plaice, Pleuronectes platessa L. Genet Res. 1977 Aug;30(1):45–62. doi: 10.1017/s0016672300017456. [DOI] [PubMed] [Google Scholar]
  12. Zouros E., Foltz D. W. The use of allelic isozyme variation for the study of heterosis. Isozymes Curr Top Biol Med Res. 1987;13:1–59. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES