Abstract
Galaxias truttaceus is found in coastal rivers and streams in south-eastern Australia. It spawns at the head of estuaries in autumn and the larvae spend 3 months of winter at sea before returning to fresh water. In Tasmania there are landlocked populations of G. truttaceus in a cluster of geologically young lakes on the recently glaciated Central Plateau. These populations have no marine larval stage and spawn in the lakes in spring. Speciation due to land locking is thought to be a frequent occurrence within Galaxias. To investigate the nature of the speciation event which may be occurring within lake populations of G. truttaceus we studied the mitochondrial DNA (mtDNA) and allozyme diversity of both lake and stream populations. Using the presence or absence of restriction sites recognized by 13 six-base restriction endonucleases, we found 58 mtDNA haplotypes among 150 fish collected from 13 Tasmanian and one south-east Australian mainland stream populations. The most parsimonious network relating the haplotypes by site loss or gain was starlike in shape. We argue that this arrangement is best explained by selection upon slightly beneficial mutations within the mitochondrial genome. Gene diversity analysis under Wright's island model showed that the populations in each drainage were not genetically subdivided. Only two of these stream haplotypes were found among the 66 fish analyzed from four lake populations. Despite the extreme lack of mtDNA diversity in lake populations, the observed nuclear DNA heterozygosity of 40 lake fish (0.10355) was only slightly less than that of 82 stream fish (0.11635). In the short time (3000-7000 years) that the lake fish have been landlocked, random genetic drift in a finite, stable-sized population was probably not responsible for the lack of mtDNA diversity in the lake populations. We infer the lake populations have probably experienced at least one, severe, but transitory bottleneck possibly induced by natural selection for life-history characters essential for survival in the lacustrine habitat. If speciation is occurring in the landlocked populations of G. truttaceus, then it may be driven by genetic transilience.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araya A., Amthauer R., Leon G., Krauskopf M. Cloning, physical mapping and genome organization of mitochondrial DNA from Cyprinus carpio oocytes. Mol Gen Genet. 1984;196(1):43–52. doi: 10.1007/BF00334090. [DOI] [PubMed] [Google Scholar]
- Avise J. C., Ball R. M., Arnold J. Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol Biol Evol. 1988 Jul;5(4):331–344. doi: 10.1093/oxfordjournals.molbev.a040504. [DOI] [PubMed] [Google Scholar]
- Avise J. C., Neigel J. E., Arnold J. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol. 1984;20(2):99–105. doi: 10.1007/BF02257369. [DOI] [PubMed] [Google Scholar]
- Birky C. W., Jr, Fuerst P., Maruyama T. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics. 1989 Mar;121(3):613–627. doi: 10.1093/genetics/121.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
- Cann R. L., Stoneking M., Wilson A. C. Mitochondrial DNA and human evolution. Nature. 1987 Jan 1;325(6099):31–36. doi: 10.1038/325031a0. [DOI] [PubMed] [Google Scholar]
- Carson H. L. Inference of the time of origin of some Drosophila species. Nature. 1976 Feb 5;259(5542):395–396. doi: 10.1038/259395a0. [DOI] [PubMed] [Google Scholar]
- Hixson J. E., Brown W. M. A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol. 1986 Jan;3(1):1–18. doi: 10.1093/oxfordjournals.molbev.a040379. [DOI] [PubMed] [Google Scholar]
- MacRae A. F., Anderson W. W. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics. 1988 Oct;120(2):485–494. doi: 10.1093/genetics/120.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayr E. Processes of speciation in animals. Prog Clin Biol Res. 1982;96:1–19. [PubMed] [Google Scholar]
- Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321–3323. doi: 10.1073/pnas.70.12.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Jin L. Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol. 1989 May;6(3):290–300. doi: 10.1093/oxfordjournals.molbev.a040547. [DOI] [PubMed] [Google Scholar]
- Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ota T. Mutational pressure as the main cause of molecular evolution and polymorphism. Nature. 1974 Nov 29;252(5482):351–354. doi: 10.1038/252351a0. [DOI] [PubMed] [Google Scholar]
- Powell J. R. Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence from Drosophila. Proc Natl Acad Sci U S A. 1983 Jan;80(2):492–495. doi: 10.1073/pnas.80.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rand D. M., Harrison R. G. Molecular population genetics of mtDNA size variation in crickets. Genetics. 1989 Mar;121(3):551–569. doi: 10.1093/genetics/121.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Palumbi S. R. Extranuclear differentiation and gene flow in the finite island model. Genetics. 1985 Feb;109(2):441–457. doi: 10.1093/genetics/109.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tegelström H. Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus). J Mol Evol. 1987;24(3):218–227. doi: 10.1007/BF02111235. [DOI] [PubMed] [Google Scholar]
- Templeton A. R. The theory of speciation via the founder principle. Genetics. 1980 Apr;94(4):1011–1038. doi: 10.1093/genetics/94.4.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallis G. P. Mitochondrial DNA insertion polymorphism and germ line heteroplasmy in the Triturus cristatus complex. Heredity (Edinb) 1987 Apr;58(Pt 2):229–238. doi: 10.1038/hdy.1987.37. [DOI] [PubMed] [Google Scholar]
- Wright S. Isolation by Distance. Genetics. 1943 Mar;28(2):114–138. doi: 10.1093/genetics/28.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]