Abstract
The light (lt) gene of Drosophila melanogaster is located at the base of the left arm of chromosome 2, within or very near centromeric heterochromatin (2Lh). Chromosome rearrangements that move the lt(+) gene from its normal proximal position and place the gene in distal euchromatin result in mosaic or variegated expression of the gene. The cytogenetic and genetic properties of 17 lt-variegated rearrangements are described in this report. We show that five of the heterochromatic genes adjacent to lt are subject to inactivation by these rearrangements and that the euchromatic loci in proximal 2L are not detectably affected. The properties of the rearrangements suggest that proximity to heterochromatin is an important regulatory requirement for at least six 2Lh genes. We discuss how the properties of the position effects on heterochromatic genes relate to other proximity-dependent phenomena such as transvection.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER W. K., REIN A. The dichotornous action of Y chromosomes on the expression of position-effect variegation. Genetics. 1962 Oct;47:1399–1407. doi: 10.1093/genetics/47.10.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker W K. V-Type Position Effects of a Gene in Drosophila Virilis Normally Located in Heterochromatin. Genetics. 1953 Jul;38(4):328–344. doi: 10.1093/genetics/38.4.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauer H, Demerec M, Kaufmann B P. X-Ray Induced Chromosomal Alterations in Drosophila Melanogaster. Genetics. 1938 Nov;23(6):610–630. doi: 10.1093/genetics/23.6.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brittnacher J. G., Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. III. Nature of enhancer of SD. Genetics. 1984 Jul;107(3):423–434. doi: 10.1093/genetics/107.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brittnacher J. G., Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. IV. Construction and analysis of free duplications for the Responder locus. Genetics. 1989 Apr;121(4):739–750. doi: 10.1093/genetics/121.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butner K., Lo C. W. Modulation of tk expression in mouse pericentromeric heterochromatin. Mol Cell Biol. 1986 Dec;6(12):4440–4449. doi: 10.1128/mcb.6.12.4440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark S. H., Chovnick A. Studies of normal and position-affected expression of rosy region genes in Drosophila melanogaster. Genetics. 1986 Nov;114(3):819–840. doi: 10.1093/genetics/114.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Comings D. E. Arrangement of chromatin in the nucleus. Hum Genet. 1980 Feb;53(2):131–143. doi: 10.1007/BF00273484. [DOI] [PubMed] [Google Scholar]
- Daniels S. B., McCarron M., Love C., Clark S. H., Chovnick A. The underlying bases of gene expression differences in stable transformants of the rosy locus in Drosophila melanogaster. Genetics. 1986 Jun;113(2):265–285. doi: 10.1093/genetics/113.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devlin R. H., Bingham B., Wakimoto B. T. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics. 1990 May;125(1):129–140. doi: 10.1093/genetics/125.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellison J. R., Howard G. C. Non-random position of the A-T rich DNA sequences in early embryos of Drosophila virilis. Chromosoma. 1981;83(4):555–561. doi: 10.1007/BF00328279. [DOI] [PubMed] [Google Scholar]
- Ephrussi B., Sutton E. A Reconsideration of the Mechanism of Position Effect. Proc Natl Acad Sci U S A. 1944 Aug 15;30(8):183–197. doi: 10.1073/pnas.30.8.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Henikoff S., Dreesen T. D. Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6704–6708. doi: 10.1073/pnas.86.17.6704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hessler A Y. V-Type Position Effects at the Light Locus in Drosophila Melanogaster. Genetics. 1958 May;43(3):395–403. doi: 10.1093/genetics/43.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilliker A. J., Holm D. G. Genetic analysis of the proximal region of chromosome 2 of Drosophila melanogaster. I. Detachment products of compound autosomes. Genetics. 1975 Dec;81(4):705–721. doi: 10.1093/genetics/81.4.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilliker A. J., Trusis-Coulter S. N. Analysis of the functional significance of linkage group conservation in Drosophila. Genetics. 1987 Oct;117(2):233–244. doi: 10.1093/genetics/117.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstrasser M., Sedat J. W. Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation. J Cell Biol. 1987 Jun;104(6):1471–1483. doi: 10.1083/jcb.104.6.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James T. C., Elgin S. C. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986 Nov;6(11):3862–3872. doi: 10.1128/mcb.6.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
- Lifschytz E., Hareven D. Heterochromatin markers: arrangement of obligatory heterochromatin, histone genes and multisite gene families in the interphase nucleus of D. melanogaster. Chromosoma. 1982;86(4):443–455. doi: 10.1007/BF00330120. [DOI] [PubMed] [Google Scholar]
- Lifschytz E., Lindsley D. L. The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation). Proc Natl Acad Sci U S A. 1972 Jan;69(1):182–186. doi: 10.1073/pnas.69.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Locke J., Kotarski M. A., Tartof K. D. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics. 1988 Sep;120(1):181–198. doi: 10.1093/genetics/120.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manuelidis L., Borden J. Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma. 1988;96(6):397–410. doi: 10.1007/BF00303033. [DOI] [PubMed] [Google Scholar]
- Reuter G., Wolff I. Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet. 1981;182(3):516–519. doi: 10.1007/BF00293947. [DOI] [PubMed] [Google Scholar]
- Roberts P. A. Differences in synaptic affinity of chromosome arms of Drosophila melanogaster revealed by differential sensitivity to translocation heterozygosity. Genetics. 1972 Jul;71(3):401–415. doi: 10.1093/genetics/71.3.401. [DOI] [PubMed] [Google Scholar]
- Roberts P. A. Screening for x-ray-induced crossover suppressors in Drosophila melanogaster: prevalence and effectiveness of translocations. Genetics. 1970 Jul;65(3):429–448. doi: 10.1093/genetics/65.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz J. Variegation in Drosophila and the Inert Chromosome Regions. Proc Natl Acad Sci U S A. 1936 Jan;22(1):27–33. doi: 10.1073/pnas.22.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz J, Dobzhansky T. The Relation of a Dominant Eye Color in Drosophila Melanogaster to the Associated Chromosome Rearrangement. Genetics. 1934 Jul;19(4):344–364. doi: 10.1093/genetics/19.4.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro R. A., Wakimoto B. T., Subers E. M., Nathanson N. M. Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9039–9043. doi: 10.1073/pnas.86.22.9039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp C. B., Hilliker A. J., Holm D. G. Further Characterization of Genetic Elements Associated with the Segregation Distorter Phenomenon in DROSOPHILA MELANOGASTER. Genetics. 1985 Aug;110(4):671–688. doi: 10.1093/genetics/110.4.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon J. A., Sutton C. A., Lobell R. B., Glaser R. L., Lis J. T. Determinants of heat shock-induced chromosome puffing. Cell. 1985 Apr;40(4):805–817. doi: 10.1016/0092-8674(85)90340-x. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell. 1983 Aug;34(1):47–57. doi: 10.1016/0092-8674(83)90135-6. [DOI] [PubMed] [Google Scholar]
- Stern C, Kodani M. Studies on the Position Effect at the Cubitus Interruptus Locus of Drosophila Melanogaster. Genetics. 1955 May;40(3):343–373. doi: 10.1093/genetics/40.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tartof K. D., Hobbs C., Jones M. A structural basis for variegating position effects. Cell. 1984 Jul;37(3):869–878. doi: 10.1016/0092-8674(84)90422-7. [DOI] [PubMed] [Google Scholar]
- Wright T. R., Hodgetts R. B., Sherald A. F. The genetics of dopa decarboxylase in Drosophila melanogaster. I. Isolation and characterization of deficiencies that delete the dopa-decarboxylase-dosage-sensitive region and the alpha-methyl-dopa-hypersensitive locus. Genetics. 1976 Oct;84(2):267–285. doi: 10.1093/genetics/84.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]