Skip to main content
Genetics logoLink to Genetics
. 1990 Jul;125(3):527–534. doi: 10.1093/genetics/125.3.527

Two Tests of Y Chromosomal Variation in Male Fertility of Drosophila Melanogaster

A G Clark 1
PMCID: PMC1204080  PMID: 2116355

Abstract

Deficiency mapping with Y autosome translocations has shown that the Y chromosome of Drosophila melanogaster carries genes that are essential to male fertility. While the qualitative behavior of these lesions provides important insight into the physiological importance of the Y chromosome, quantitative variation in effects on male fertility among extant Y chromosomes in natural populations may have a significant effect on the evolution of the Y chromosome. Here a series of 36 Y chromosome replacement lines were tested in two ways designed to detect subtle variation in effects on male fertility and total male fitness. The first test involved crossing males from the 36 lines to an excess of females in an attempt to measure differences in male mating success (virility) and male fecundity. The second test challenged males bearing each of the 36 Y chromosomes to competition in populations with males bearing a standard, phenotypically marked (B(S)Y) chromosome. These tests indicated that the Y chromosome lines did not differ significantly in either male fertility or total fitness, but that interactions with autosomes approached significance. A deterministic population genetic model was developed allowing Y autosome interaction in fertility, and it is shown that, consistent with the experimental observations, this model cannot protect Y-linked polymorphism.

Full Text

The Full Text of this article is available as a PDF (771.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark A. G. Natural selection and Y-linked polymorphism. Genetics. 1987 Mar;115(3):569–577. doi: 10.1093/genetics/115.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark A. G. Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model. Genetics. 1984 Aug;107(4):679–701. doi: 10.1093/genetics/107.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark A. G. The evolution of the Y chromosome with X-Y recombination. Genetics. 1988 Jul;119(3):711–720. doi: 10.1093/genetics/119.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coyne J. A. The genetic basis of Haldane's rule. 1985 Apr 25-May 1Nature. 314(6013):736–738. doi: 10.1038/314736a0. [DOI] [PubMed] [Google Scholar]
  5. Curtsinger J. W. Components of selection in X chromosome lines of Drosophila melanogaster: sex ratio modification by meiotic drive and viability selection. Genetics. 1984 Dec;108(4):941–952. doi: 10.1093/genetics/108.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dimitri P., Pisano C. Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics. 1989 Aug;122(4):793–800. doi: 10.1093/genetics/122.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Komma D. J., Endow S. A. Incomplete Y chromosomes promote magnification in male and female Drosophila. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2382–2386. doi: 10.1073/pnas.84.8.2382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Komma D. J., Endow S. A. Magnification of the ribosomal genes in female Drosophila melanogaster. Genetics. 1986 Nov;114(3):859–874. doi: 10.1093/genetics/114.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lindsley D L, Edington C W, Von Halle E S. Sex-Linked Recessive Lethals in Drosophila Whose Expression Is Suppressed by the Y Chromosome. Genetics. 1960 Dec;45(12):1649–1670. doi: 10.1093/genetics/45.12.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lyckegaard E. M., Clark A. G. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1944–1948. doi: 10.1073/pnas.86.6.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKee B. D., Karpen G. H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell. 1990 Apr 6;61(1):61–72. doi: 10.1016/0092-8674(90)90215-z. [DOI] [PubMed] [Google Scholar]
  12. McKee B., Lindsley D. L. Inseparability of X-Heterochromatic Functions Responsible for X:Y Pairing, Meiotic Drive, and Male Fertility in Drosophila melanogaster. Genetics. 1987 Jul;116(3):399–407. doi: 10.1093/genetics/116.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pantazidis A. C., Zouros E. Location of an autosomal factor causing sterility in Drosophila mojavensis males carrying the Drosophila arizonensis Y chromosome. Heredity (Edinb) 1988 Apr;60(Pt 2):299–304. doi: 10.1038/hdy.1988.46. [DOI] [PubMed] [Google Scholar]
  14. Singh R. S., Rhomberg L. R. A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. II. Estimates of Heterozygosity and Patterns of Geographic Differentiation. Genetics. 1987 Oct;117(2):255–271. doi: 10.1093/genetics/117.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Voelker R. A. Preliminary characterization of "sex ratio" and rediscovery and reinterpretation of "male sex ratio" in Drosophila affinis. Genetics. 1972 Aug;71(4):597–606. doi: 10.1093/genetics/71.4.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Williams S. M., Furnier G. R., Fuog E., Strobeck C. Evolution of the ribosomal DNA spacers of Drosophila melanogaster: different patterns of variation on X and Y chromosomes. Genetics. 1987 Jun;116(2):225–232. doi: 10.1093/genetics/116.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES