Abstract
The tailspike protein of bacteriophage P22 assembles with mature capsids during the final reaction in phage morphogenesis. The gene 9 mutation hmH3034 synthesizes a tailspike protein with a change at amino acid 100 from Asp to Asn. This mutant form of trimeric tailspike protein fails to assemble with capsids in vivo. By using in vitro quantitative tailspike-capsid assembly assays, this mutant tailspike trimer can be shown to assemble with capsids at very high tailspike concentrations. From these assays, we estimate that this single missense mutation decreases by 100-500-fold the affinity of the tailspike for capsids. Furthermore, hmH3034 tailspike protein has a structural defect which makes the mature tailspike trimers sensitive to SDS at room temperature and causes the trimers to ``partially unfold.'' Spontaneously arising intragenic suppressors of the capsid assembly defect have been isolated. All of these suppressors are changes at amino acid 13 of the tailspike protein, which substitute His, Leu or Ser for the wild type amino acid Arg. These hmH3034/sup3034 mutants and the separated sup3034 mutants form fully functional tailspike proteins with assembly activities indistinguishable from wild type while retaining the SDS-sensitive structural defect. From the analysis of the hmH3034 mutant and its suppressors, we propose that in the wild-type tailspike protein, the Asp residue at position 100 and the Arg residue at position 13 form an intrachain or interchain salt bridge which stabilizes the amino terminus of the tailspike protein and that the unneutralized positive charge at amino acid 13 in the hmH3034 protein is the cause of the assembly defect of this protein. To test this hypothesis we have generated suppressors of the hmH3034 mutation by site-directed, random mutagenesis of codon 13. From the broad spectrum of amino acids at position 13 which function as suppressors of hmH3034 we have concluded that elimination of Arg at position 13 is sufficient in most cases to restore capsid assembly activity to the hmH3034 protein.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berget P. B., Poteete A. R., Sauer R. T. Control of phage P22 tail protein expression by transcription termination. J Mol Biol. 1983 Mar 15;164(4):561–572. doi: 10.1016/0022-2836(83)90050-5. [DOI] [PubMed] [Google Scholar]
- Berget P. B., Poteete A. R. Structure and functions of the bacteriophage P22 tail protein. J Virol. 1980 Apr;34(1):234–243. doi: 10.1128/jvi.34.1.234-243.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botstein D., Waddell C. H., King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. doi: 10.1016/0022-2836(73)90204-0. [DOI] [PubMed] [Google Scholar]
- Dente L., Cesareni G., Cortese R. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 1983 Mar 25;11(6):1645–1655. doi: 10.1093/nar/11.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldenberg D. P., Berget P. B., King J. Maturation of the tail spike endorhamnosidase of Salmonella phage P22. J Biol Chem. 1982 Jul 10;257(13):7864–7871. [PubMed] [Google Scholar]
- Israel J. V., Anderson T. F., Levine M. in vitro MORPHOGENESIS OF PHAGE P22 FROM HEADS AND BASE-PLATE PARTS. Proc Natl Acad Sci U S A. 1967 Feb;57(2):284–291. doi: 10.1073/pnas.57.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato H., Fujisawa H., Minagawa T. Genetic analysis of subunit assembly of the tail fiber of bacteriophage T3. Virology. 1985 Oct 15;146(1):12–21. doi: 10.1016/0042-6822(85)90048-0. [DOI] [PubMed] [Google Scholar]
- Kato H., Fujisawa H., Minagawa T. Purification and characterization of gene 17 product of bacteriophage T3. Virology. 1985 Oct 15;146(1):22–26. doi: 10.1016/0042-6822(85)90049-2. [DOI] [PubMed] [Google Scholar]
- Kato H., Fujisawa H., Minagawa T. Subunit arrangement of the tail fiber of bacteriophage T3. Virology. 1986 Aug;153(1):80–86. doi: 10.1016/0042-6822(86)90009-7. [DOI] [PubMed] [Google Scholar]
- Rennell D., Poteete A. R. Phage P22 lysis genes: nucleotide sequences and functional relationships with T4 and lambda genes. Virology. 1985 May;143(1):280–289. doi: 10.1016/0042-6822(85)90115-1. [DOI] [PubMed] [Google Scholar]
- Schwarz J. J., Berget P. B. The isolation and sequence of missense and nonsense mutations in the cloned bacteriophage P22 tailspike protein gene. Genetics. 1989 Apr;121(4):635–649. doi: 10.1093/genetics/121.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturtevant J. M., Yu M. H., Haase-Pettingell C., King J. Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J Biol Chem. 1989 Jun 25;264(18):10693–10698. [PubMed] [Google Scholar]
- Villafane R., King J. Nature and distribution of sites of temperature-sensitive folding mutations in the gene for the P22 tailspike polypeptide chain. J Mol Biol. 1988 Dec 5;204(3):607–619. doi: 10.1016/0022-2836(88)90359-2. [DOI] [PubMed] [Google Scholar]