Skip to main content
Genetics logoLink to Genetics
. 1990 Aug;125(4):703–708. doi: 10.1093/genetics/125.4.703

Orientation of Genes in the Bacillus Subtilis Chromosome

D R Zeigler 1, D H Dean 1
PMCID: PMC1204096  PMID: 2118869

Abstract

The orientation of 96 genes on the Bacillus subtilis chromosome was deduced by the analysis of published data. Of these genes, 91 were found to be oriented so that their promoters were proximal to the chromosomal replication origin and their transcription termini to the replication terminus. Transcription of these genes would therefore be co-directional with replication. This chromosomal organization is consistent with the hypothesis advanced for Escherichia coli that bacteria avoid head-on collisions between RNA polymerase and DNA replication proteins by the appropriate orientation of their transcription units.

Full Text

The Full Text of this article is available as a PDF (637.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini A. M., Caramori T., Henner D., Ferrari E., Galizzi A. Nucleotide sequence of the outB locus of Bacillus subtilis and regulation of its expression. J Bacteriol. 1987 Apr;169(4):1480–1484. doi: 10.1128/jb.169.4.1480-1484.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beall B., Lowe M., Lutkenhaus J. Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. J Bacteriol. 1988 Oct;170(10):4855–4864. doi: 10.1128/jb.170.10.4855-4864.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binnie C., Coote J. G. Density gradient analysis of DNA replicated during Bacillus subtilis sporulation. J Bacteriol. 1983 Oct;156(1):466–470. doi: 10.1128/jb.156.1.466-470.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouvier J., Stragier P., Bonamy C., Szulmajster J. Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7012–7016. doi: 10.1073/pnas.81.22.7012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boylan S. A., Suh J. W., Thomas S. M., Price C. W. Gene encoding the alpha core subunit of Bacillus subtilis RNA polymerase is cotranscribed with the genes for initiation factor 1 and ribosomal proteins B, S13, S11, and L17. J Bacteriol. 1989 May;171(5):2553–2562. doi: 10.1128/jb.171.5.2553-2562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brewer B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell. 1988 Jun 3;53(5):679–686. doi: 10.1016/0092-8674(88)90086-4. [DOI] [PubMed] [Google Scholar]
  7. Bugaichuk U. D., Piggot P. J. Nucleotide sequence of the Bacillus subtilis developmental gene spoVE. J Gen Microbiol. 1986 Jul;132(7):1883–1890. doi: 10.1099/00221287-132-7-1883. [DOI] [PubMed] [Google Scholar]
  8. Bugaichuk U. D. Studies of transcriptional regulation of the Bacillus subtilis developmental gene spoVE. J Gen Microbiol. 1987 Sep;133(9):2349–2357. doi: 10.1099/00221287-133-9-2349. [DOI] [PubMed] [Google Scholar]
  9. Callister H., Wake R. G. Completed chromosomes in thymine-requiring Bacillus subtilis spores. J Bacteriol. 1974 Nov;120(2):579–582. doi: 10.1128/jb.120.2.579-582.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Callister H., Wake R. G. Homogeneity in Bacillus subtilis spore DNA content. J Mol Biol. 1976 Apr 5;102(2):367–371. doi: 10.1016/s0022-2836(76)80060-5. [DOI] [PubMed] [Google Scholar]
  11. Chen N. Y., Zhang J. J., Paulus H. Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J Gen Microbiol. 1989 Nov;135(11):2931–2940. doi: 10.1099/00221287-135-11-2931. [DOI] [PubMed] [Google Scholar]
  12. Cutting S., Mandelstam J. The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis. J Gen Microbiol. 1986 Nov;132(11):3013–3024. doi: 10.1099/00221287-132-11-3013. [DOI] [PubMed] [Google Scholar]
  13. Ebbole D. J., Zalkin H. Bacillus subtilis pur operon expression and regulation. J Bacteriol. 1989 Apr;171(4):2136–2141. doi: 10.1128/jb.171.4.2136-2141.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ebbole D. J., Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem. 1987 Jun 15;262(17):8274–8287. [PubMed] [Google Scholar]
  15. Errington J., Mandelstam J. Use of a lacZ gene fusion to determine the dependence pattern and the spore compartment expression of sporulation operon spoVA in spo mutants of Bacillus subtilis. J Gen Microbiol. 1986 Nov;132(11):2977–2985. doi: 10.1099/00221287-132-11-2977. [DOI] [PubMed] [Google Scholar]
  16. Feavers I. M., Miles J. S., Moir A. The nucleotide sequence of a spore germination gene (gerA) of Bacillus subtilis 168. Gene. 1985;38(1-3):95–102. doi: 10.1016/0378-1119(85)90207-0. [DOI] [PubMed] [Google Scholar]
  17. Ferrari E., Scoffone F., Ciarrocchi G., Galizzi A. Molecular cloning of a Bacillus subtilis gene involved in spore outgrowth. J Gen Microbiol. 1985 Oct;131(10):2831–2838. doi: 10.1099/00221287-131-10-2831. [DOI] [PubMed] [Google Scholar]
  18. Ferrari F. A., Trach K., Hoch J. A. Sequence analysis of the spo0B locus reveals a polycistronic transcription unit. J Bacteriol. 1985 Feb;161(2):556–562. doi: 10.1128/jb.161.2.556-562.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fort P., Errington J. Nucleotide sequence and complementation analysis of a polycistronic sporulation operon, spoVA, in Bacillus subtilis. J Gen Microbiol. 1985 May;131(5):1091–1105. doi: 10.1099/00221287-131-5-1091. [DOI] [PubMed] [Google Scholar]
  20. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
  21. Gay P., Le Coq D., Steinmetz M., Ferrari E., Hoch J. A. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol. 1983 Mar;153(3):1424–1431. doi: 10.1128/jb.153.3.1424-1431.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hasnain S., Sammons R., Roberts I., Thomas C. M. Cloning and deletion analysis of a genomic segment of Bacillus subtilis coding for the sdhA, B, C (succinate dehydrogenase) and gerE (spore germination) loci. J Gen Microbiol. 1985 Sep;131(9):2269–2279. doi: 10.1099/00221287-131-9-2269. [DOI] [PubMed] [Google Scholar]
  23. Henkin T. M., Moon S. H., Mattheakis L. C., Nomura M. Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis: comparison with the spc operon of Escherichia coli. Nucleic Acids Res. 1989 Sep 25;17(18):7469–7486. doi: 10.1093/nar/17.18.7469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Henner D. J., Band L., Flaggs G., Chen E. The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes. Gene. 1986;49(1):147–152. doi: 10.1016/0378-1119(86)90394-x. [DOI] [PubMed] [Google Scholar]
  25. Iwakura M., Kawata M., Tsuda K., Tanaka T. Nucleotide sequence of the thymidylate synthase B and dihydrofolate reductase genes contained in one Bacillus subtilis operon. Gene. 1988 Apr 15;64(1):9–20. doi: 10.1016/0378-1119(88)90476-3. [DOI] [PubMed] [Google Scholar]
  26. Loughney K., Lund E., Dahlberg J. E. tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res. 1982 Mar 11;10(5):1607–1624. doi: 10.1093/nar/10.5.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mackey C. J., Warburg R. J., Halvorson H. O., Zahler S. A. Genetic and physical analysis of the ilvBC-leu region in Bacillus subtilis. Gene. 1984 Dec;32(1-2):49–56. doi: 10.1016/0378-1119(84)90031-3. [DOI] [PubMed] [Google Scholar]
  28. Mackey C. J., Zahler S. A. Insertion of bacteriophage SP beta into the citF gene of Bacillus subtilis and specialized transduction of the ilvBC-leu genes. J Bacteriol. 1982 Sep;151(3):1222–1229. doi: 10.1128/jb.151.3.1222-1229.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miles J. S., Guest J. R. Complete nucleotide sequence of the fumarase gene (citG) of Bacillus subtilis 168. Nucleic Acids Res. 1985 Jan 11;13(1):131–140. doi: 10.1093/nar/13.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mori M., Tanimoto A., Yoda K., Harada S., Koyama N., Hashiguchi K., Obinata M., Yamasaki M., Tamura G. Essential structure in the cloned transforming DNA that induces gene amplification of the Bacillus subtilis amyE-tmrB region. J Bacteriol. 1986 Jun;166(3):787–794. doi: 10.1128/jb.166.3.787-794.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moriya S., Ogasawara N., Yoshikawa H. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 1985 Apr 11;13(7):2251–2265. doi: 10.1093/nar/13.7.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nomura S., Yamane K., Sasaki T., Yamasaki M., Tamura G., Maruo B. Tunicamycin-resistant mutants and chromosomal locations of mutational sites in Bacillus subtilis. J Bacteriol. 1978 Nov;136(2):818–821. doi: 10.1128/jb.136.2.818-821.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ogasawara N., Moriya S., Yoshikawa H. Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res. 1983 Sep 24;11(18):6301–6318. doi: 10.1093/nar/11.18.6301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Phillips M. K., Hederstedt L., Hasnain S., Rutberg L., Guest J. R. Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol. 1987 Feb;169(2):864–873. doi: 10.1128/jb.169.2.864-873.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Piggot P. J., Chak K. F., Bugaichuk U. D. Isolation and characterization of a clone of the spoVE locus of Bacillus subtilis. J Gen Microbiol. 1986 Jul;132(7):1875–1881. doi: 10.1099/00221287-132-7-1875. [DOI] [PubMed] [Google Scholar]
  36. Price C. W., Doi R. H. Genetic mapping of rpoD implicates the major sigma factor of Bacillus subtilis RNA polymerase in sporulation initiation. Mol Gen Genet. 1985;201(1):88–95. doi: 10.1007/BF00397991. [DOI] [PubMed] [Google Scholar]
  37. Riley M., Anilionis A. Evolution of the bacterial genome. Annu Rev Microbiol. 1978;32:519–560. doi: 10.1146/annurev.mi.32.100178.002511. [DOI] [PubMed] [Google Scholar]
  38. Sargent M. G. Chromosome replication in sporulating cells of Bacillus subtilis. J Bacteriol. 1980 May;142(2):491–498. doi: 10.1128/jb.142.2.491-498.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schmid M. B., Roth J. R. Selection and endpoint distribution of bacterial inversion mutations. Genetics. 1983 Nov;105(3):539–557. doi: 10.1093/genetics/105.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Song B. H., Neuhard J. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Mol Gen Genet. 1989 Apr;216(2-3):462–468. doi: 10.1007/BF00334391. [DOI] [PubMed] [Google Scholar]
  41. Steinmetz M., Le Coq D., Aymerich S., Gonzy-Tréboul G., Gay P. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet. 1985;200(2):220–228. doi: 10.1007/BF00425427. [DOI] [PubMed] [Google Scholar]
  42. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu J. J., Howard M. G., Piggot P. J. Regulation of transcription of the Bacillus subtilis spoIIA locus. J Bacteriol. 1989 Feb;171(2):692–698. doi: 10.1128/jb.171.2.692-698.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES