Skip to main content
Genetics logoLink to Genetics
. 1990 Aug;125(4):833–844. doi: 10.1093/genetics/125.4.833

Genetic and Molecular Analysis of Vg(u) and Vg(w): Two Dominant Vg Alleles Associated with Gene Fusions in Drosophila

J A Williams 1, I M Scott 1, A L Atkin 1, W J Brook 1, M A Russell 1, J B Bell 1
PMCID: PMC1204109  PMID: 1975790

Abstract

In the absence of a vg(+) gene, extensive cell death occurs in third instar imaginal discs, which results in a complete loss of adult wing margin structures. Essentially all molecularly characterized vg alleles are associated with deletions or insertions of DNA into the vg locus. These alterations reduce or eliminate a 3.8-kb vg-specific transcript, resulting in recessive loss of function alleles. We report here the analysis of two dominant vg alleles which have been identified (vg(U) and vg(W)). The vg(U) allele is associated with a chromosomal inversion which splits the vg locus, resulting in a gene fusion between vg and the mastermind (mam) neurogenic locus. Reversion analysis of vg(U) indicates that sequences from the mam locus are required for vg(U) dominance. The vg(W) allele is also the result of a chromosomal inversion, in this case resulting in a gene fusion between vg and the homeobox-containing invected (inv) gene. It is also associated with novel dominant homeotic transformations. Revertant analysis indicates that sequences from inv are required for the dominant wing and dominant homeotic effects of vg(W). The vg dominance does not appear to be mediated through a reduction of vg expression or a novel fusion transcript in either vg(U) or vg(W). The results are consistent with a model in which inappropriate expression of inv causes the dominant homeotic effects seen in vg(W).

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson M., Pirrotta V. The Drosophila zeste protein binds cooperatively to sites in many gene regulatory regions: implications for transvection and gene regulation. EMBO J. 1988 Dec 1;7(12):3907–3915. doi: 10.1002/j.1460-2075.1988.tb03277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casanova J., Sánchez-Herrero E., Morata G. Developmental analysis of a hybrid gene composed of parts of the Ubx and abd-A genes of Drosophila. EMBO J. 1988 Apr;7(4):1097–1105. doi: 10.1002/j.1460-2075.1988.tb02918.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coleman K. G., Poole S. J., Weir M. P., Soeller W. C., Kornberg T. The invected gene of Drosophila: sequence analysis and expression studies reveal a close kinship to the engrailed gene. Genes Dev. 1987 Mar;1(1):19–28. doi: 10.1101/gad.1.1.19. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  5. Frischauf A. M., Lehrach H., Poustka A., Murray N. Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983 Nov 15;170(4):827–842. doi: 10.1016/s0022-2836(83)80190-9. [DOI] [PubMed] [Google Scholar]
  6. Gietz R. D., Hodgetts R. B. An analysis of dopa decarboxylase expression during embryogenesis in Drosophila melanogaster. Dev Biol. 1985 Jan;107(1):142–155. doi: 10.1016/0012-1606(85)90383-5. [DOI] [PubMed] [Google Scholar]
  7. Hoopes B. C., McClure W. R. Studies on the selectivity of DNA precipitation by spermine. Nucleic Acids Res. 1981 Oct 24;9(20):5493–5504. doi: 10.1093/nar/9.20.5493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ish-Horowicz D., Pinchin S. M., Schedl P., Artavanis-Tsakonas S., Mirault M. E. Genetic and molecular analysis of the 87A7 and 87C1 heat-inducible loci of D. melanogaster. Cell. 1979 Dec;18(4):1351–1358. doi: 10.1016/0092-8674(79)90245-9. [DOI] [PubMed] [Google Scholar]
  9. James A. A., Bryant P. J. Mutations causing pattern deficiencies and duplications in the imaginal wing disk of Drosophila melanogaster. Dev Biol. 1981 Jul 15;85(1):39–54. doi: 10.1016/0012-1606(81)90234-7. [DOI] [PubMed] [Google Scholar]
  10. Kaufman T. C., Tasaka S. E., Suzuki D. T. The interaction of two complex loci, zeste and bithorax in Drosophila melanogaster. Genetics. 1973 Oct;75(2):299–321. doi: 10.1093/genetics/75.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kornberg T., Sidén I., O'Farrell P., Simon M. The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell. 1985 Jan;40(1):45–53. doi: 10.1016/0092-8674(85)90307-1. [DOI] [PubMed] [Google Scholar]
  12. Lasko P. F., Pardue M. L. Studies of the genetic organization of the vestigial microregion of Drosophila melanogaster. Genetics. 1988 Oct;120(2):495–502. doi: 10.1093/genetics/120.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lawrence P. A., Morata G. Compartments in the wing of Drosophila: a study of the engrailed gene. Dev Biol. 1976 Jun;50(2):321–337. doi: 10.1016/0012-1606(76)90155-x. [DOI] [PubMed] [Google Scholar]
  14. McGill S., Chia W., Karp R., Ashburner M. The molecular analyses of an antimorphic mutation of Drosophila melanogaster, Scutoid. Genetics. 1988 Jul;119(3):647–661. doi: 10.1093/genetics/119.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Connell P. O., Rosbash M. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 1984 Jul 11;12(13):5495–5513. doi: 10.1093/nar/12.13.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pirrotta V., Manet E., Hardon E., Bickel S. E., Benson M. Structure and sequence of the Drosophila zeste gene. EMBO J. 1987 Mar;6(3):791–799. doi: 10.1002/j.1460-2075.1987.tb04821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Poole S. J., Kauvar L. M., Drees B., Kornberg T. The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell. 1985 Jan;40(1):37–43. doi: 10.1016/0092-8674(85)90306-x. [DOI] [PubMed] [Google Scholar]
  18. Rowe A., Akam M. The structure and expression of a hybrid homeotic gene. EMBO J. 1988 Apr;7(4):1107–1114. doi: 10.1002/j.1460-2075.1988.tb02919.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williams J. A., Atkin A. L., Bell J. B. The functional organization of the vestigial locus in Drosophila melanogaster. Mol Gen Genet. 1990 Mar;221(1):8–16. doi: 10.1007/BF00280361. [DOI] [PubMed] [Google Scholar]
  21. Williams J. A., Bell J. B. Molecular organization of the vestigial region in Drosophila melanogaster. EMBO J. 1988 May;7(5):1355–1363. doi: 10.1002/j.1460-2075.1988.tb02951.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Williams J. A., Pappu S. S., Bell J. B. Molecular analysis of hybrid dysgenesis-induced derivatives of a P-element allele at the vg locus. Mol Cell Biol. 1988 Apr;8(4):1489–1497. doi: 10.1128/mcb.8.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yedvobnick B., Smoller D., Young P., Mills D. Molecular analysis of the neurogenic locus mastermind of Drosophila melanogaster. Genetics. 1988 Mar;118(3):483–497. doi: 10.1093/genetics/118.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zachar Z., Chapman C. H., Bingham P. M. On the molecular basis of transvection effects and the regulation of transcription. Cold Spring Harb Symp Quant Biol. 1985;50:337–346. doi: 10.1101/sqb.1985.050.01.043. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES