Skip to main content
Genetics logoLink to Genetics
. 1990 Sep;126(1):207–217. doi: 10.1093/genetics/126.1.207

DNA Sequence Variation within Maize and Melon: Observations from Polymerase Chain Reaction Amplification and Direct Sequencing

D M Shattuck-Eidens 1, R N Bell 1, S L Neuhausen 1, T Helentjaris 1
PMCID: PMC1204125  PMID: 1977657

Abstract

While compiling genetic linkage maps in several plant species based upon restriction fragment length polymorphisms (RFLPs), it was noted that the incidence of polymorphism differs among species. The basis of this disparity was investigated in this study by examining the nucleotide sequence at homologous loci among distinct cultivars within two species which exhibit considerably different levels of RFLPs. Using the polymerase chain reaction, homologous regions from different cultivars were first amplified and the nucleotide sequence of the products were determined. Four genomic regions of seven maize cultivars and three genomic regions of eight melon cultivars were examined to compare the respective levels of sequence variation between the two species. Levels of variation for both base substitutions and insertions/deletions varied widely among the maize sequences and between maize and melon for base substitutions. Estimates of theta (a measure of polymorphism) ranged from 0 to 0.002 in melon and from 0.006 to 0.040 for base substitutions and from 0.002 to 0.023 for insertions/deletions in maize. Critical value tests and chi-squared tests suggested that in maize the underlying processes generating and maintaining neutral mutations differ among the regions. The results not only suggest that several mechanisms are necessary to explain the variation seen in these two species, but also point to some basic dissimilarities in the organization and maintenance of the genomes of different plant species.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Döring H. P., Starlinger P. Barbara McClintock's controlling elements: now at the DNA level. Cell. 1984 Dec;39(2 Pt 1):253–259. doi: 10.1016/0092-8674(84)90002-3. [DOI] [PubMed] [Google Scholar]
  3. Helentjaris T., Weber D. F., Wright S. Use of monosomics to map cloned DNA fragments in maize. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6035–6039. doi: 10.1073/pnas.83.16.6035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ingle J., Timmis J. N., Sinclair J. The Relationship between Satellite Deoxyribonucleic Acid, Ribosomal Ribonucleic Acid Gene Redundancy, and Genome Size in Plants. Plant Physiol. 1975 Mar;55(3):496–501. doi: 10.1104/pp.55.3.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jeffreys A. J., Wilson V., Thein S. L. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4;316(6023):76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
  6. Kunkel T. A., Soni A. Mutagenesis by transient misalignment. J Biol Chem. 1988 Oct 15;263(29):14784–14789. [PubMed] [Google Scholar]
  7. Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal Biochem. 1984 May 1;138(2):267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
  8. Ralston E. J., English J. J., Dooner H. K. Sequence of three bronze alleles of maize and correlation with the genetic fine structure. Genetics. 1988 May;119(1):185–197. doi: 10.1093/genetics/119.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  10. Sutton W. D., Gerlach W. L., Peacock W. J., Schwartz D. Molecular analysis of ds controlling element mutations at the adh1 locus of maize. Science. 1984 Mar 23;223(4642):1265–1268. doi: 10.1126/science.223.4642.1265. [DOI] [PubMed] [Google Scholar]
  11. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Werr W., Frommer W. B., Maas C., Starlinger P. Structure of the sucrose synthase gene on chromosome 9 of Zea mays L. EMBO J. 1985 Jun;4(6):1373–1380. doi: 10.1002/j.1460-2075.1985.tb03789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES