Skip to main content
Genetics logoLink to Genetics
. 1990 Sep;126(1):25–40. doi: 10.1093/genetics/126.1.25

Genetic Dissection of the Biochemical Activities of Recbcd Enzyme

S K Amundsen 1, A M Neiman 1, S M Thibodeaux 1, G R Smith 1
PMCID: PMC1204130  PMID: 2172076

Abstract

RecBCD enzyme of Escherichia coli is required for the major pathway of homologous recombination following conjugation. The enzyme has an ATP-dependent DNA unwinding activity, ATP-dependent single-stranded (ss) and double-stranded (ds) DNA exonuclease activities, and an activity that makes a ss DNA endonucleolytic cut near Chi sites. We have isolated and characterized ten mutations that reduced recombination proficiency and inactivated some, but not all, activities of RecBCD enzyme. One class of mutants had weak ds DNA exonuclease activity and lacked Chi-dependent DNA cleavage activity, a second class lacked only Chi-dependent DNA cleavage activity, and a third class retained all activities tested. The properties of these mutants indicate that the DNA unwinding and ss DNA exonuclease activities of the RecBCD enzyme are not sufficient for recombination. Furthermore, they suggest that the Chi-dependent DNA cleavage activity or another, as yet unidentified activity or both are required for recombination. The roles of the RecBCD enzymatic activities in recombination and exclusion of foreign DNA are discussed in light of the properties of these and other recBCD mutations.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amundsen S. K., Taylor A. F., Chaudhury A. M., Smith G. R. recD: the gene for an essential third subunit of exonuclease V. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5558–5562. doi: 10.1073/pnas.83.15.5558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buttin G., Wright M. Enzymatic DNA degradation in E. coli: its relationship to synthetic processes at the chromosome level. Cold Spring Harb Symp Quant Biol. 1968;33:259–269. doi: 10.1101/sqb.1968.033.01.030. [DOI] [PubMed] [Google Scholar]
  3. Chattoraj D. K., Cordes K., Berman M. L., Das A. Mutagenesis and mutation transfer induced by ultraviolet light in plasmid-cloned DNA. Gene. 1984 Feb;27(2):213–222. doi: 10.1016/0378-1119(84)90142-2. [DOI] [PubMed] [Google Scholar]
  4. Cheng K. C., Smith G. R. Distribution of Chi-stimulated recombinational exchanges and heteroduplex endpoints in phage lambda. Genetics. 1989 Sep;123(1):5–17. doi: 10.1093/genetics/123.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng K. C., Smith G. R. Recombinational hotspot activity of Chi-like sequences. J Mol Biol. 1984 Dec 5;180(2):371–377. doi: 10.1016/s0022-2836(84)80009-1. [DOI] [PubMed] [Google Scholar]
  6. Comeau D. E., Inouye M. A novel method for the cloning of chromosomal mutations in a single step: isolation of two mutant alleles of envZ, an osmoregulatory gene from Escherichia coli. Mol Gen Genet. 1988 Jul;213(1):166–169. doi: 10.1007/BF00333415. [DOI] [PubMed] [Google Scholar]
  7. Dykstra C. C., Prasher D., Kushner S. R. Physical and biochemical analysis of the cloned recB and recC genes of Escherichia coli K-12. J Bacteriol. 1984 Jan;157(1):21–27. doi: 10.1128/jb.157.1.21-27.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emmerson P. T. Recombination deficient mutants of Escherichia coli K12 that map between thy A and argA. Genetics. 1968 Sep;60(1):19–30. doi: 10.1093/genetics/60.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Enquist L. W., Skalka A. Replication of bacteriophage lambda DNA dependent on the function of host and viral genes. I. Interaction of red, gam and rec. J Mol Biol. 1973 Apr 5;75(2):185–212. doi: 10.1016/0022-2836(73)90016-8. [DOI] [PubMed] [Google Scholar]
  10. Faulds D., Dower N., Stahl M. M., Stahl F. W. Orientation-dependent recombination hotspot activity in bacteriophage lambda. J Mol Biol. 1979 Jul 15;131(4):681–695. doi: 10.1016/0022-2836(79)90197-9. [DOI] [PubMed] [Google Scholar]
  11. Goldmark P. J., Linn S. An endonuclease activity from Escherichia coli absent from certain rec- strains. Proc Natl Acad Sci U S A. 1970 Sep;67(1):434–441. doi: 10.1073/pnas.67.1.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lundblad V., Taylor A. F., Smith G. R., Kleckner N. Unusual alleles of recB and recC stimulate excision of inverted repeat transposons Tn10 and Tn5. Proc Natl Acad Sci U S A. 1984 Feb;81(3):824–828. doi: 10.1073/pnas.81.3.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mathews C. K. Biochemistry of deoxyribonucleic acid-defective amber mutants of bacteriophage T4. 3. Nucleotide pools. J Biol Chem. 1972 Nov 25;247(22):7430–7438. [PubMed] [Google Scholar]
  14. Oliver D. B., Goldberg E. B. Protection of parental T4 DNA from a restriction exonuclease by the product of gene 2. J Mol Biol. 1977 Nov;116(4):877–881. doi: 10.1016/0022-2836(77)90276-5. [DOI] [PubMed] [Google Scholar]
  15. Ponticelli A. S., Schultz D. W., Taylor A. F., Smith G. R. Chi-dependent DNA strand cleavage by RecBC enzyme. Cell. 1985 May;41(1):145–151. doi: 10.1016/0092-8674(85)90069-8. [DOI] [PubMed] [Google Scholar]
  16. Rhoades M., MacHattie L. A., Thomas C. A., Jr The P22 bacteriophage DNA molecule. I. The mature form. J Mol Biol. 1968 Oct 14;37(1):21–40. doi: 10.1016/0022-2836(68)90071-5. [DOI] [PubMed] [Google Scholar]
  17. Rosamond J., Telander K. M., Linn S. Modulation of the action of the recBC enzyme of Escherichia coli K-12 by Ca2+. J Biol Chem. 1979 Sep 10;254(17):8646–8652. [PubMed] [Google Scholar]
  18. Rosenberg S. M. Chi-stimulated patches are heteroduplex, with recombinant information on the phage lambda r chain. Cell. 1987 Mar 13;48(5):855–865. doi: 10.1016/0092-8674(87)90082-1. [DOI] [PubMed] [Google Scholar]
  19. Sasaki M., Fujiyoshi T., Shimada K., Takagi Y. Fine structure of the recB and recC gene region of Escherichia coli. Biochem Biophys Res Commun. 1982 Nov 30;109(2):414–422. doi: 10.1016/0006-291x(82)91737-5. [DOI] [PubMed] [Google Scholar]
  20. Schultz D. W., Taylor A. F., Smith G. R. Escherichia coli RecBC pseudorevertants lacking chi recombinational hotspot activity. J Bacteriol. 1983 Aug;155(2):664–680. doi: 10.1128/jb.155.2.664-680.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Silverstein J. L., Goldberg E. B. T4 DNA injection. I. Growth cycle of a gene 2 mutant. Virology. 1976 Jul 1;72(1):195–211. doi: 10.1016/0042-6822(76)90323-8. [DOI] [PubMed] [Google Scholar]
  22. Sironi G. Mutants of Escherichia coli unable to be lysogenized by the temperate bacteriophage P2. Virology. 1969 Feb;37(2):163–176. doi: 10.1016/0042-6822(69)90196-2. [DOI] [PubMed] [Google Scholar]
  23. Smith G. R., Kunes S. M., Schultz D. W., Taylor A., Triman K. L. Structure of chi hotspots of generalized recombination. Cell. 1981 May;24(2):429–436. doi: 10.1016/0092-8674(81)90333-0. [DOI] [PubMed] [Google Scholar]
  24. Smith G. R. Mechanism and control of homologous recombination in Escherichia coli. Annu Rev Genet. 1987;21:179–201. doi: 10.1146/annurev.ge.21.120187.001143. [DOI] [PubMed] [Google Scholar]
  25. Stahl F. W., Stahl M. M. Recombination pathway specificity of Chi. Genetics. 1977 Aug;86(4):715–725. doi: 10.1093/genetics/86.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stahl F. W., Stahl M. M., Young L., Kobayashi I. Chi-stimulated recombination between phage lambda and the plasmid lambda dv. Genetics. 1982 Dec;102(4):599–613. doi: 10.1093/genetics/102.4.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taylor A. F., Schultz D. W., Ponticelli A. S., Smith G. R. RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell. 1985 May;41(1):153–163. doi: 10.1016/0092-8674(85)90070-4. [DOI] [PubMed] [Google Scholar]
  28. Taylor A. F., Smith G. R. Action of RecBCD enzyme on cruciform DNA. J Mol Biol. 1990 Jan 5;211(1):117–134. doi: 10.1016/0022-2836(90)90015-E. [DOI] [PubMed] [Google Scholar]
  29. Taylor A. F., Smith G. R. Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. J Mol Biol. 1985 Sep 20;185(2):431–443. doi: 10.1016/0022-2836(85)90414-0. [DOI] [PubMed] [Google Scholar]
  30. Taylor A., Smith G. R. Unwinding and rewinding of DNA by the RecBC enzyme. Cell. 1980 Nov;22(2 Pt 2):447–457. doi: 10.1016/0092-8674(80)90355-4. [DOI] [PubMed] [Google Scholar]
  31. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Willetts N. S., Clark A. J. Characteristics of some multiply recombination-deficient strains of Escherichia coli. J Bacteriol. 1969 Oct;100(1):231–239. doi: 10.1128/jb.100.1.231-239.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zabrovitz S., Segev N., Cohen G. Growth of bacteriophage P1 in recombination-deficient hosts of Escherichia coli. Virology. 1977 Jul 15;80(2):233–248. doi: 10.1016/s0042-6822(77)80001-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES