Skip to main content
Genetics logoLink to Genetics
. 1990 Sep;126(1):63–72. doi: 10.1093/genetics/126.1.63

Behavior of the [Mi-3] Mutation and Conversion of Polymorphic Mtdna Markers in Heterokaryons of Neurospora Crassa

A Hawse 1, R A Collins 1, F E Nargang 1
PMCID: PMC1204137  PMID: 1977658

Abstract

We have examined the behavior of the [mi-3] mitochondrial mutation and two physical mtDNA markers in heterokaryotic cultures of Neurospora crassa. Previous workers showed that a 1.2-kilobase insertion in the larger polymorphic form of EcoRI-5 restriction fragment is a site of high frequency and rapid unidirectional gene conversion. We have confirmed this observation and determined by DNA sequence analysis that the insertion in the EcoRI-5 fragment corresponds precisely to an optional intron that contains a long open reading frame in the ND1 gene. Thus, the conversion of the short, intron-lacking, form of EcoRI-5 to the longer, intron-containing, form may be analogous to the unidirectional gene conversion events catalyzed by intron-encoded proteins in other organisms. The resolution of two polymorphic forms of the mtDNA EcoRI-9 restriction fragment in our heterokaryons differs from that observed previously and suggests that this locus is not a site of gene conversion in our heterokaryon pair. The size polymorphism of the EcoRI-9 fragments is due to a tandemly reiterated 78-base-pair sequence which occurs two times in the short form and three times in the long form. One copy of the repeat unit and 66 base pairs following it have been duplicated from the ND2 gene which is located about 30 kilobases distant on the mtDNA. In contrast to the [poky] mitochondrial mutant, which was completely dominant over wild-type mitochondria in heterokaryons, the [mi-3] mutant was recovered in only seven of twenty heterokaryons after ten cycles of conidiation and subculturing. The resolution of the [mi-3] or wild-type phenotype in heterokaryons may depend solely on random factors such as allele input frequency, drift, and segregation rather than specific dominant or suppressive effects.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agsteribbe E., Hartog M., de Vries H. Duplication of the tRNA(MMet) and tRNA(Cys) genes and of fragments of a gene encoding a subunit of the NADH dehydrogenase complex in Neurospora grassa mitochondrial DNA. Curr Genet. 1989 Jan;15(1):57–62. doi: 10.1007/BF00445752. [DOI] [PubMed] [Google Scholar]
  2. Akins R. A., Lambowitz A. M. The [poky] mutant of Neurospora contains a 4-base-pair deletion at the 5' end of the mitochondrial small rRNA. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3791–3795. doi: 10.1073/pnas.81.12.3791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barath Z., Küntzel H. Cooperation of mitochondrial and nuclear genes specifying the mitochondrial genetic apparatus in Neurospora crassa. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1371–1374. doi: 10.1073/pnas.69.6.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell-Pedersen D., Quirk S. M., Aubrey M., Belfort M. A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4. Gene. 1989 Oct 15;82(1):119–126. doi: 10.1016/0378-1119(89)90036-x. [DOI] [PubMed] [Google Scholar]
  5. Bernard U., Pühler A., Mayer F., Küntzel H. Denaturation map of the circular mitochondrial genome of Neurospora crassa. Biochim Biophys Acta. 1975 Aug 21;402(2):270–278. doi: 10.1016/0005-2787(75)90047-7. [DOI] [PubMed] [Google Scholar]
  6. Bertrand H., Collins R. A., Stohl L. L., Goewert R. R., Lambowitz A. M. Deletion mutants of Neurospora crassa mitochondrial DNA and their relationship to the "stop-start" growth phenotype. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6032–6036. doi: 10.1073/pnas.77.10.6032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bertrand H., Pittenger T. H. Cytoplasmic Mutants Selected from Continuously Growing Cultures of NEUROSPORA CRASSA. Genetics. 1969 Mar;61(3):643–659. doi: 10.1093/genetics/61.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butow R. A., Perlman P. S., Grossman L. I. The unusual varl gene of yeast mitochondrial DNA. Science. 1985 Jun 28;228(4707):1496–1501. doi: 10.1126/science.2990030. [DOI] [PubMed] [Google Scholar]
  9. Chomyn A., Mariottini P., Cleeter M. W., Ragan C. I., Matsuno-Yagi A., Hatefi Y., Doolittle R. F., Attardi G. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature. 1985 Apr 18;314(6012):592–597. doi: 10.1038/314592a0. [DOI] [PubMed] [Google Scholar]
  10. Delahodde A., Goguel V., Becam A. M., Creusot F., Perea J., Banroques J., Jacq C. Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell. 1989 Feb 10;56(3):431–441. doi: 10.1016/0092-8674(89)90246-8. [DOI] [PubMed] [Google Scholar]
  11. Diacumakos E. G., Garnjobst L., Tatum E. L. A cytoplasmic character in Neurospora crassa. The role of nuclei and mitochondria. J Cell Biol. 1965 Aug;26(2):427–443. doi: 10.1083/jcb.26.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dujon B., Slonimski P. P., Weill L. Mitochondrial genetics IX: A model for recombination and segregation of mitochondrial genomes in saccharomyces cerevisiae. Genetics. 1974 Sep;78(1):415–437. doi: 10.1093/genetics/78.1.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garnjobst L., Wilson J. F., Tatum E. L. Studies on a cytoplasmic character in Neurospora crassa. J Cell Biol. 1965 Aug;26(2):413–425. doi: 10.1083/jcb.26.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gross S. R., Hsieh T. S., Levine P. H. Intramolecular recombination as a source of mitochondrial chromosome heteromorphism in Neurospora. Cell. 1984 Aug;38(1):233–239. doi: 10.1016/0092-8674(84)90545-2. [DOI] [PubMed] [Google Scholar]
  15. Mannella C. A., Lambowitz A. M. Unidirectional gene conversion associated with two insertions in neurospora crassa mitochondrial DNA. Genetics. 1979 Nov;93(3):645–654. doi: 10.1093/genetics/93.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  17. Muscarella D. E., Vogt V. M. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell. 1989 Feb 10;56(3):443–454. doi: 10.1016/0092-8674(89)90247-x. [DOI] [PubMed] [Google Scholar]
  18. Nargang F. E., Bertrand H. Nuclear mutants of Neurospora crassa temperature-sensitive for the synthesis of cytochrome aa3. I. Isolation and preliminary characterization. Mol Gen Genet. 1978 Oct 25;166(1):15–23. doi: 10.1007/BF00379724. [DOI] [PubMed] [Google Scholar]
  19. Norgard M. V., Keem K., Monahan J. J. Factors affecting the transformation of Escherichia coli strain chi1776 by pBR322 plasmid DNA. Gene. 1978 Jul;3(4):279–292. doi: 10.1016/0378-1119(78)90038-0. [DOI] [PubMed] [Google Scholar]
  20. Pittenger T. H. SYNERGISM OF TWO CYTOPLASMICALLY INHERITED MUTANTS IN NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1956 Oct;42(10):747–752. doi: 10.1073/pnas.42.10.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quirk S. M., Bell-Pedersen D., Belfort M. Intron mobility in the T-even phages: high frequency inheritance of group I introns promoted by intron open reading frames. Cell. 1989 Feb 10;56(3):455–465. doi: 10.1016/0092-8674(89)90248-1. [DOI] [PubMed] [Google Scholar]
  22. Terpstra P., Holtrop M., Kroon A. Heterogeneous base distribution in mitochondrial DNA of Neurospora crassa. Nucleic Acids Res. 1977 Jan;4(1):129–139. doi: 10.1093/nar/4.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiller G., Schueller C. M., Schweyen R. J. Putative target sites for mobile G + C rich clusters in yeast mitochondrial DNA: single elements and tandem arrays. Mol Gen Genet. 1989 Aug;218(2):272–283. doi: 10.1007/BF00331278. [DOI] [PubMed] [Google Scholar]
  24. Wenzlau J. M., Saldanha R. J., Butow R. A., Perlman P. S. A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell. 1989 Feb 10;56(3):421–430. doi: 10.1016/0092-8674(89)90245-6. [DOI] [PubMed] [Google Scholar]
  25. de Zamaroczy M., Bernardi G. The GC clusters of the mitochondrial genome of yeast and their evolutionary origin. Gene. 1986;41(1):1–22. doi: 10.1016/0378-1119(86)90262-3. [DOI] [PubMed] [Google Scholar]
  26. de Zamaroczy M., Faugeron-Fonty G., Bernardi G. Excision sequences in the mitochondrial genome of yeast. Gene. 1983 Mar;21(3):193–202. doi: 10.1016/0378-1119(83)90002-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES