Skip to main content
Genetics logoLink to Genetics
. 1990 Nov;126(3):519–533. doi: 10.1093/genetics/126.3.519

Further Tests of a Recombination Model in Which χ Removes the Recd Subunit from the Recbcd Enzyme of Escherichia Coli

F W Stahl 1, L C Thomason 1, I Siddiqi 1, M M Stahl 1
PMCID: PMC1204209  PMID: 2249753

Abstract

When one of two infecting λ phage types in a replication-blocked cross is χ(+) and DNA packaging is divorced from the RecBCD-χ interaction, complementary χ-stimulated recombinants are recovered equally in mass lysates only if the χ(+) parent is in excess in the infecting parental mixture. Otherwise, the χ(0) recombinant is recovered in excess. This observation implies that, along with the χ(0) chromosome, two χ(+) parent chromosomes are involved in the formation of each χ(+) recombinant. The trimolecular nature of χ(+)-stimulated recombination is manifest in recombination between λ and a plasmid. When λ recombines with a plasmid via the RecBCD pathway, the resulting chromosome has an enhanced probability of undergoing λ X λ recombination in the interval into which the plasmid was incorporated. These two observations support a model in which DNA is degraded by Exo V from cos, the sequence that determines the end of packaged λ DNA and acts as point of entry for RecBCD enzyme, to χ, the DNA sequence that stimulates the RecBCD enzyme to effect recombination. The model supposes that χ acts by ejecting the RecD subunit from the RecBCD enzyme with two consequences. (1) ExoV activity is blocked leaving a highly recombinagenic, frayed duplex end near χ, and (2) as the enzyme stripped of the RecD subunit travels beyond χ it is competent to catalyze reciprocal recombination.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amundsen S. K., Taylor A. F., Chaudhury A. M., Smith G. R. recD: the gene for an essential third subunit of exonuclease V. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5558–5562. doi: 10.1073/pnas.83.15.5558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROWN A., ARBER W. TEMPERATURE-SENSITIVE MUTANTS OF COLIPHAGE LAMBDA. Virology. 1964 Oct;24:237–239. doi: 10.1016/0042-6822(64)90114-x. [DOI] [PubMed] [Google Scholar]
  3. Biek D. P., Cohen S. N. Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Escherichia coli. J Bacteriol. 1986 Aug;167(2):594–603. doi: 10.1128/jb.167.2.594-603.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAMPBELL A., DELCAMPILLO-CAMPBELL A. MUTANT OF LAMBDA BACTERIOPHAGE PRODUCING A THERMOLABILE ENDOLYSIN. J Bacteriol. 1963 Jun;85:1202–1207. doi: 10.1128/jb.85.6.1202-1207.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  6. Cameron J. R., Panasenko S. M., Lehman I. R., Davis R. W. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3416–3420. doi: 10.1073/pnas.72.9.3416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chaudhury A. M., Smith G. R. A new class of Escherichia coli recBC mutants: implications for the role of RecBC enzyme in homologous recombination. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7850–7854. doi: 10.1073/pnas.81.24.7850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conley E. C., West S. C. Homologous pairing and the formation of nascent synaptic intermediates between regions of duplex DNA by RecA protein. Cell. 1989 Mar 24;56(6):987–995. doi: 10.1016/0092-8674(89)90632-6. [DOI] [PubMed] [Google Scholar]
  9. Feiss M., Sippy J., Miller G. Processive action of terminase during sequential packaging of bacteriophage lambda chromosomes. J Mol Biol. 1985 Dec 20;186(4):759–771. doi: 10.1016/0022-2836(85)90395-x. [DOI] [PubMed] [Google Scholar]
  10. Frackman S., Siegele D. A., Feiss M. A functional domain of bacteriophage lambda terminase for prohead binding. J Mol Biol. 1984 Dec 5;180(2):283–300. doi: 10.1016/s0022-2836(84)80005-4. [DOI] [PubMed] [Google Scholar]
  11. Gingery R., Echols H. Mutants of bacteriophage lambda unable to integrate into the host chromosome. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1507–1514. doi: 10.1073/pnas.58.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HERSHEY A. D. The production of recombinants in phage crosses. Cold Spring Harb Symp Quant Biol. 1958;23:19–46. doi: 10.1101/sqb.1958.023.01.006. [DOI] [PubMed] [Google Scholar]
  13. Henderson D., Weil J. Recombination-deficient deletions in bacteriophage lambda and their interaction with chi mutations. Genetics. 1975 Feb;79(2):143–174. doi: 10.1093/genetics/79.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herman R. K. Identification of recombinant chromosomes and F-merogenotes in merodiploids of Escherichia coli. J Bacteriol. 1968 Jul;96(1):173–179. doi: 10.1128/jb.96.1.173-179.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herman R. K. Reciprocal recombination of chromosome and F. merogenote in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1664–1668. doi: 10.1128/jb.90.6.1664-1668.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KAISER A. D., JACOB F. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology. 1957 Dec;4(3):509–521. doi: 10.1016/0042-6822(57)90083-1. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi I., Ikeda H. Double Holliday structure: a possible in vivo intermediate form of general recombination in Escherichia coli. Mol Gen Genet. 1983;191(2):213–220. doi: 10.1007/BF00334816. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi I., Murialdo H., Crasemann J. M., Stahl M. M., Stahl F. W. Orientation of cohesive end site cos determines the active orientation of chi sequence in stimulating recA . recBC-mediated recombination in phage lambda lytic infections. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5981–5985. doi: 10.1073/pnas.79.19.5981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kobayashi I., Stahl M. M., Fairfield F. R., Stahl F. W. Coupling with packaging explains apparent nonreciprocality of Chi-stimulated recombination of bacteriophage lambda by RecA and RecBC functions. Genetics. 1984 Dec;108(4):773–794. doi: 10.1093/genetics/108.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kobayashi I., Stahl M. M., Leach D., Stahl F. W. The interaction of cos with Chi is separable from DNA packaging in recA-recBC-mediated recombination of bacteriophage lambda. Genetics. 1983 Aug;104(4):549–570. doi: 10.1093/genetics/104.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mahan M. J., Roth J. R. Role of recBC function in formation of chromosomal rearrangements: a two-step model for recombination. Genetics. 1989 Mar;121(3):433–443. doi: 10.1093/genetics/121.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McMilin K. D., Russo V. E. Maturation and recombination of bacteriophage lambda DNA molecules in the absence of DNA duplication. J Mol Biol. 1972 Jul 14;68(1):49–55. doi: 10.1016/0022-2836(72)90261-6. [DOI] [PubMed] [Google Scholar]
  23. Meselson M. Reciprocal recombination in prophage lambda. J Cell Physiol. 1967 Oct;70(2 Suppl):113–118. doi: 10.1002/jcp.1040700409. [DOI] [PubMed] [Google Scholar]
  24. Palas K. M., Kushner S. R. Biochemical and physical characterization of exonuclease V from Escherichia coli. Comparison of the catalytic activities of the RecBC and RecBCD enzymes. J Biol Chem. 1990 Feb 25;265(6):3447–3454. [PubMed] [Google Scholar]
  25. Rosenberg S. M. Chain-bias of Escherichia coli Rec-mediated lambda patch recombinants is independent of the orientation of lambda cos. Genetics. 1988 Sep;120(1):7–21. doi: 10.1093/genetics/120.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schuster H., Beyersmann D., Mikolajczyk M., Schlicht M. Prophage induction by high temperature in thermosensitive dna mutants lysogenic for bacteriophage lambda. J Virol. 1973 Jun;11(6):879–885. doi: 10.1128/jvi.11.6.879-885.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Signer E. R., Weil J. Recombination in bacteriophage lambda. I. Mutants deficient in general recombination. J Mol Biol. 1968 Jul 14;34(2):261–271. doi: 10.1016/0022-2836(68)90251-9. [DOI] [PubMed] [Google Scholar]
  28. Smith G. R., Amundsen S. K., Chaudhury A. M., Cheng K. C., Ponticelli A. S., Roberts C. M., Schultz D. W., Taylor A. F. Roles of RecBC enzyme and chi sites in homologous recombination. Cold Spring Harb Symp Quant Biol. 1984;49:485–495. doi: 10.1101/sqb.1984.049.01.055. [DOI] [PubMed] [Google Scholar]
  29. Smith G. R., Kunes S. M., Schultz D. W., Taylor A., Triman K. L. Structure of chi hotspots of generalized recombination. Cell. 1981 May;24(2):429–436. doi: 10.1016/0092-8674(81)90333-0. [DOI] [PubMed] [Google Scholar]
  30. Stahl F. W., Crasemann J. M., Stahl M. M. Rec-mediated recombinational hot spot activity in bacteriophage lambda. III. Chi mutations are site-mutations stimulating rec-mediated recombination. J Mol Biol. 1975 May 15;94(2):203–212. doi: 10.1016/0022-2836(75)90078-9. [DOI] [PubMed] [Google Scholar]
  31. Stahl F. W., Kobayashi I., Thaler D., Stahl M. M. Direction of travel of RecBC recombinase through bacteriophage lambda DNA. Genetics. 1986 Jun;113(2):215–227. doi: 10.1093/genetics/113.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stahl F. W., Lieb M., Stahl M. M. Does Chi give or take? Genetics. 1984 Dec;108(4):795–808. doi: 10.1093/genetics/108.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stahl F. W., Stahl M. M. DNA synthesis at the site of a Red-mediated exchange in phage lambda. Genetics. 1986 May;113(1):1–12. doi: 10.1093/genetics/113.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stahl F. W., Stahl M. M., Malone R. E., Crasemann J. M. Directionality and nonreciprocality of Chi-stimulated recombination in phage lambda. Genetics. 1980 Feb;94(2):235–248. doi: 10.1093/genetics/94.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stahl F. W., Stahl M. M., Young L., Kobayashi I. Chi-stimulated recombination between phage lambda and the plasmid lambda dv. Genetics. 1982 Dec;102(4):599–613. doi: 10.1093/genetics/102.4.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thaler D. S., Sampson E., Siddiqi I., Rosenberg S. M., Thomason L. C., Stahl F. W., Stahl M. M. Recombination of bacteriophage lambda in recD mutants of Escherichia coli. Genome. 1989;31(1):53–67. doi: 10.1139/g89-013. [DOI] [PubMed] [Google Scholar]
  37. Yagil E., Shtromas I. Rec-mediated recombinational activity of two adjacent Chi elements in bacteriophage lambda. Genet Res. 1985 Feb;45(1):1–8. doi: 10.1017/s0016672300021911. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES