Skip to main content
Genetics logoLink to Genetics
. 1990 Dec;126(4):975–989. doi: 10.1093/genetics/126.4.975

Selection on Wing Allometry in Drosophila Melanogaster

K E Weber 1
PMCID: PMC1204293  PMID: 2127580

Abstract

Five bivariate distributions of wing dimensions of Drosophila melanogaster were measured, in flies 1) subjected to four defined environmental regimes during development, 2) taken directly from nature in seven U.S. states, 3) selected in ten populations for change in wing form, and 4) sampled from 21 long inbred wild-type lines. Environmental stresses during development altered both wing size and the ratios of wing dimensions, but regardless of treatment all wing dimensions fell near a common allometric baseline in each bivariate distribution. The wings of wild-caught flies from seven widely separated localities, and of their laboratory-reared offspring, also fell along the same baselines. However, when flies were selected divergently for lateral offset from these developmental baselines, response to selection was rapid in every case. The mean divergence in offset between oppositely selected lines was 14.68 SD of the base population offset, after only 15 generations of selection at 20%. Measurements of 21 isofemale lines, founded from wild-caught flies and maintained in small populations for at least 22 years, showed large reductions in phenotypic variance of offsets within lines, but a large increase in the variance among lines. The variance of means of isofemale lines within collection localities was ten times the variance of means among localities of newly established wild lines. These observations show that much additive genetic variance exists for individual dimensions within the wing, such that bivariate developmental patterns can be changed in any direction by selection or by drift. The relative invariance of the allometric baselines of wing morphology in nature is most easily explained as the result of continuous natural selection around a local optimum of functional design.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coyne J. A., Beecham E. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics. 1987 Dec;117(4):727–737. doi: 10.1093/genetics/117.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. García-Bellido A. Genetic control of wing disc development in Drosophila. Ciba Found Symp. 1975;0(29):161–182. doi: 10.1002/9780470720110.ch8. [DOI] [PubMed] [Google Scholar]
  3. Gould S. J. Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc. 1966 Nov;41(4):587–640. doi: 10.1111/j.1469-185x.1966.tb01624.x. [DOI] [PubMed] [Google Scholar]
  4. Gould S. J., Lewontin R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581–598. doi: 10.1098/rspb.1979.0086. [DOI] [PubMed] [Google Scholar]
  5. Hyytia P., Capy P., David J. R., Singh R. S. Enzymatic and quantitative variation in European and African populations of Drosophila simulans. Heredity (Edinb) 1985 Apr;54(Pt 2):209–217. doi: 10.1038/hdy.1985.28. [DOI] [PubMed] [Google Scholar]
  6. PREVOSTI A. Geographical variability in quantitative traits in populations of Drosophila subobscura. Cold Spring Harb Symp Quant Biol. 1955;20:294–299. doi: 10.1101/sqb.1955.020.01.028. [DOI] [PubMed] [Google Scholar]
  7. Prout T., Barker J. S. Ecological aspects of the heritability of body size in Drosophila buzzatii. Genetics. 1989 Dec;123(4):803–813. doi: 10.1093/genetics/123.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Roff D. A., Mousseau T. A. Quantitative genetics and fitness: lessons from Drosophila. Heredity (Edinb) 1987 Feb;58(Pt 1):103–118. doi: 10.1038/hdy.1987.15. [DOI] [PubMed] [Google Scholar]
  9. Smith J. M. The genetics of stasis and punctuation. Annu Rev Genet. 1983;17:11–25. doi: 10.1146/annurev.ge.17.120183.000303. [DOI] [PubMed] [Google Scholar]
  10. Weber K. E., Diggins L. T. Increased selection response in larger populations. II. Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes. Genetics. 1990 Jul;125(3):585–597. doi: 10.1093/genetics/125.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Weber K. E. Increased selection response in larger populations. I. Selection for wing-tip height in Drosophila melanogaster at three population sizes. Genetics. 1990 Jul;125(3):579–584. doi: 10.1093/genetics/125.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES