Skip to main content
Genetics logoLink to Genetics
. 1991 Jan;127(1):125–138. doi: 10.1093/genetics/127.1.125

The Doublesex Locus of Drosophila Melanogaster and Its Flanking Regions: A Cytogenetic Analysis

B S Baker 1, G Hoff 1, T C Kaufman 1, M F Wolfner 1, T Hazelrigg 1
PMCID: PMC1204298  PMID: 1901816

Abstract

The region of the third chromosome (84D-F) of Drosophila melanogaster that contains the doublesex (dsx) locus has been cytogenetically analyzed. Twenty nine newly induced, and 42 preexisting rearrangements broken in dsx and the regions flanking dsx have been cytologically and genetically characterized. These studies established that the dsx locus is in salivary chromosome band 84E1-2. In addition, these observations provide strong evidence that the dsx locus functions only to regulate sexual differentiation and does not encode a vital function. To obtain new alleles at the dsx locus and to begin to analyze the genes flanking dsx, 59 lethal and visible mutations in a region encompassing dsx were induced. These mutations together with preexisting mutations in the region were deficiency mapped and placed into complementation groups. Among the mutations we isolated, four new mutations affecting sexual differentiation were identified. All proved to be alleles of dsx, suggesting that dsx is the only gene in this region involved in regulating sexual differentiation. All but one of the new dsx alleles have equivalent effects in males and females. The exception, dsx(EFH55), strongly affects female sexual differentiation, but only weakly affects male sexual differentiation. The interactions of dsx(EFH55) with mutations in other genes affecting sexual differentiation are described. These results are discussed in terms of the recent molecular findings that the dsx locus encodes sex-specific proteins that share in common their amino termini but have different carboxyl termini. The 72 mutations in this region that do not affect sexual differentiation identify 25 complementation groups. A translocation, T(2;3)Es that is associated with a lethal allele in one of these complementation groups is also broken at the engrailed (en) locus on the second chromosome and has a dominant phenotype that may be due to the expression of en in the anterior portion of the abdominal tergites where en is not normally expressed. The essential genes found in the 84D-F region are not evenly distributed throughout this region; most strikingly the 84D1-11 region appears to be devoid of essential genes. It is suggested that the lack of essential genes in this region is due to the region (1) containing genes with nonessential functions and (2) being duplicated, possibly both internally and elsewhere in the genome.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Nagoshi R. N., Burtis K. C. Molecular genetic aspects of sex determination in Drosophila. Bioessays. 1987 Feb;6(2):66–70. doi: 10.1002/bies.950060206. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Ridge K. A. Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster. Genetics. 1980 Feb;94(2):383–423. doi: 10.1093/genetics/94.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B. S., Wolfner M. F. A molecular analysis of doublesex, a bifunctional gene that controls both male and female sexual differentiation in Drosophila melanogaster. Genes Dev. 1988 Apr;2(4):477–489. doi: 10.1101/gad.2.4.477. [DOI] [PubMed] [Google Scholar]
  4. Bossy B., Hall L. M., Spierer P. Genetic activity along 315 kb of the Drosophila chromosome. EMBO J. 1984 Nov;3(11):2537–2541. doi: 10.1002/j.1460-2075.1984.tb02169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burtis K. C., Baker B. S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell. 1989 Mar 24;56(6):997–1010. doi: 10.1016/0092-8674(89)90633-8. [DOI] [PubMed] [Google Scholar]
  6. Cavener D. R., Otteson D. C., Kaufman T. C. A rehabilitation of the genetic map of the 84B-D region in Drosophila melanogaster. Genetics. 1986 Sep;114(1):111–123. doi: 10.1093/genetics/114.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crosby M. A., Meyerowitz E. M. Lethal mutations flanking the 68C glue gene cluster on chromosome 3 of Drosophila melanogaster. Genetics. 1986 Apr;112(4):785–802. doi: 10.1093/genetics/112.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eberlein S., Russell M. A. Effects of deficiencies in the engrailed region of Drosophila melanogaster. Dev Biol. 1983 Nov;100(1):227–237. doi: 10.1016/0012-1606(83)90215-4. [DOI] [PubMed] [Google Scholar]
  9. Hayashi S., Gillam I. C., Delaney A. D., Dunn R., Tener G. M., Grigliatti T. A., Suzuki D. T. Hybridization of tRNAs of Drosophila melanogaster to polytene chromosomes. Chromosoma. 1980;76(1):65–84. doi: 10.1007/BF00292227. [DOI] [PubMed] [Google Scholar]
  10. Kalfayan L., Wensink P. C. alpha-Tubulin genes of Drosophila. Cell. 1981 Apr;24(1):97–106. doi: 10.1016/0092-8674(81)90505-5. [DOI] [PubMed] [Google Scholar]
  11. Kemphues K. J., Raff E. C., Kaufman T. C. Genetic analysis of B2t, the structural gene for a testis-specific beta-tubulin subunit in Drosophila melanogaster. Genetics. 1983 Oct;105(2):345–356. doi: 10.1093/genetics/105.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kornberg T. Compartments in the abdomen of Drosophila and the role of the engrailed locus. Dev Biol. 1981 Sep;86(2):363–372. doi: 10.1016/0012-1606(81)90194-9. [DOI] [PubMed] [Google Scholar]
  13. Leicht B. G., Bonner J. J. Genetic analysis of chromosomal region 67A-D of Drosophila melanogaster. Genetics. 1988 Jul;119(3):579–593. doi: 10.1093/genetics/119.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lewis R. A., Kaufman T. C., Denell R. E., Tallerico P. Genetic Analysis of the Antennapedia Gene Complex (Ant-C) and Adjacent Chromosomal Regions of DROSOPHILA MELANOGASTER. I. Polytene Chromosome Segments 84b-D. Genetics. 1980 Jun;95(2):367–381. doi: 10.1093/genetics/95.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mischke D., Pardue M. L. Organization and expression of alpha-tubulin genes in Drosophila melanogaster. One member of the alpha-tubulin multigene family is transcribed in both oogenesis and later embryonic development. J Mol Biol. 1982 Apr 15;156(3):449–466. doi: 10.1016/0022-2836(82)90260-1. [DOI] [PubMed] [Google Scholar]
  17. Nagoshi R. N., McKeown M., Burtis K. C., Belote J. M., Baker B. S. The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell. 1988 Apr 22;53(2):229–236. doi: 10.1016/0092-8674(88)90384-4. [DOI] [PubMed] [Google Scholar]
  18. Sánchez F., Natzle J. E., Cleveland D. W., Kirschner M. W., McCarthy B. J. A dispersed multigene family encoding tubulin in Drosophila melanogaster. Cell. 1980 Dec;22(3):845–854. doi: 10.1016/0092-8674(80)90561-9. [DOI] [PubMed] [Google Scholar]
  19. Wright T. R., Beermann W., Marsh J. L., Bishop C. P., Steward R., Black B. C., Tomsett A. D., Wright E. Y. The genetics of dopa decarboxylase in Drosophila melanogaster. IV. The genetics and cytology of the 37B10-37D1 region. Chromosoma. 1981;83(1):45–58. doi: 10.1007/BF00286015. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES