Skip to main content
Genetics logoLink to Genetics
. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181

Mendelian Factors Underlying Quantitative Traits in Tomato: Comparison across Species, Generations, and Environments

A H Paterson 1, S Damon 1, J D Hewitt 1, D Zamir 1, H D Rabinowitch 1, S E Lincoln 1, E S Lander 1, S D Tanksley 1
PMCID: PMC1204303  PMID: 1673106

Abstract

As part of ongoing studies regarding the genetic basis of quantitative variation in phenotype, we have determined the chromosomal locations of quantitative trait loci (QTLs) affecting fruit size, soluble solids concentration, and pH, in a cross between the domestic tomato (Lycopersicon esculentum Mill.) and a closely-related wild species, L. cheesmanii. Using a RFLP map of the tomato genome, we compared the inheritance patterns of polymorphisms in 350 F(2) individuals with phenotypes scored in three different ways: (1) from the F(2) progeny themselves, grown near Davis, California; (2) from F(3) families obtained by selfing each F(2) individual, grown near Gilroy, California (F(3)-CA); and (3) from equivalent F(3) families grown near Rehovot, Israel (F(3)-IS). Maximum likelihood methods were used to estimate the approximate chromosomal locations, phenotypic effects (both additive effects and dominance deviations), and gene action of QTLs underlying phenotypic variation in each of these three environments. A total of 29 putative QTLs were detected in the three environments. These QTLs were distributed over 11 of the 12 chromosomes, accounted for 4.7-42.0% of the phenotypic variance in a trait, and showed different types of gene action. Among these 29 QTLs, 4 were detected in all three environments, 10 in two environments, and 15 only in a single environment. The two California environments were most similar, sharing 11/25 (44%) QTLs, while the Israel environment was quite different, sharing 7/20 (35%) and 5/26 (19%) QTLs with the respective California environments. One major goal of QTL mapping is to predict, with maximum accuracy, which individuals will produce progeny showing particular phenotypes. Traditionally, the phenotype of an individual alone has been used to predict the phenotype of its progeny. Our results suggested that, for a trait with low heritability (soluble solids), the phenotype of F(3) progeny could be predicted more accurately from the genotype of the F(2) parent at QTLs than from the phenotype of the F(2) individual. For a trait with intermediate heritability (fruit pH), QTL genotype and observed phenotype were about equally effective at predicting progeny phenotype. For a trait with high heritability (mass per fruit), knowing the QTL genotype of an individual added little if any predictive value, to simply knowing the phenotype. The QTLs mapped in the L. esculentum X L. cheesmanii F(2) appear to be at similar locations to many of those mapped in a previous cross with a different wild tomato (L. chmielewskii). One possible explanation of this similarity is that genetic factors at some of the same loci may affect the traits in the two distantly-related wild species. Potentially major implications of such similarity across broad genetic distances are discussed, in regard to plant and animal breeding, germplasm introgression, and cloning of QTLs.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard R. W. The Wilhelmine E. Key 1987 invitational lecture. Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J Hered. 1988 Jul-Aug;79(4):225–238. doi: 10.1093/oxfordjournals.jhered.a110503. [DOI] [PubMed] [Google Scholar]
  2. Bernatzky R., Tanksley S. D. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics. 1986 Apr;112(4):887–898. doi: 10.1093/genetics/112.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edwards M. D., Stuber C. W., Wendel J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. doi: 10.1093/genetics/116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  8. Paterson A. H., DeVerna J. W., Lanini B., Tanksley S. D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990 Mar;124(3):735–742. doi: 10.1093/genetics/124.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Robertson D. S. Different Frequency in the Recovery of Crossover Products from Male and Female Gametes of Plants Hypoploid for B-a Translocations in Maize. Genetics. 1984 May;107(1):117–130. doi: 10.1093/genetics/107.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shrimpton A. E., Robertson A. The Isolation of Polygenic Factors Controlling Bristle Score in Drosophila Melanogaster. II. Distribution of Third Chromosome Bristle Effects within Chromosome Sections. Genetics. 1988 Mar;118(3):445–459. doi: 10.1093/genetics/118.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES