Abstract
Previous experiments suggest that mitotic chromosome segregation in some fungi is a nonrandom process in which chromatids of the same replicative age are destined for cosegregation. We have investigated the pattern of chromatid segregation in Saccharomyces cerevisiae by labeling the DNA of a strain auxotrophic for thymidine with 5-bromodeoxyuridine. The fate of DNA strands was followed qualitatively by immunofluorescence microscopy and quantitatively by microphotometry using an anti-5-bromodeoxyuridine monoclonal antibody. Chromatids of the same replicative age were distributed randomly to daughter cells at mitosis. Quantitative measurements showed that the amount of fluorescence in the daughter nuclei derived from parents with hemilabeled chromosomes diminished in intensity by one half. The concentration of 5-bromodeoxyuridine used in the experiments had little effect on the frequency of either homologous or sister chromatid exchanges. We infer that the 5-bromodeoxyuridine was distributed randomly due to mitotic segregation of chromatids and not via sister chromatid exchanges.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams A. E., Pringle J. R. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol. 1984 Mar;98(3):934–945. doi: 10.1083/jcb.98.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeke J. D. One and two codon insertion mutants of bacteriophage f1. Mol Gen Genet. 1981;181(3):288–291. doi: 10.1007/BF00425599. [DOI] [PubMed] [Google Scholar]
- Burke D., Gasdaska P., Hartwell L. Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Mar;9(3):1049–1059. doi: 10.1128/mcb.9.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross S. L., Smith M. M. Comparison of the structure and cell cycle expression of mRNAs encoded by two histone H3-H4 loci in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Feb;8(2):945–954. doi: 10.1128/mcb.8.2.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Gómez M. E., de al Torre C., Stockert J. C. Random segregation of sister chromatids in meristematic cells. Exp Cell Res. 1975 Nov;96(1):156–160. doi: 10.1016/s0014-4827(75)80048-6. [DOI] [PubMed] [Google Scholar]
- Geard C. R. Chromatid distribution at mitosis in cultured Wallabia bicolor cells. Chromosoma. 1973;44(3):301–308. doi: 10.1007/BF00291024. [DOI] [PubMed] [Google Scholar]
- Haber J. E., Thorburn P. C., Rogers D. Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics. 1984 Feb;106(2):185–205. doi: 10.1093/genetics/106.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H., Smith D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. 1985 Jul;110(3):381–395. doi: 10.1093/genetics/110.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helmstetter C. E., Leonard A. C. Mechanism for chromosome and minichromosome segregation in Escherichia coli. J Mol Biol. 1987 Sep 20;197(2):195–204. doi: 10.1016/0022-2836(87)90118-5. [DOI] [PubMed] [Google Scholar]
- Kaufman E. R. The role of deoxyribonucleotide metabolism in 5-bromo-2'-deoxyuridine mutagenesis in mammalian cells. Mutat Res. 1988 Jul-Aug;200(1-2):149–155. doi: 10.1016/0027-5107(88)90077-2. [DOI] [PubMed] [Google Scholar]
- Klar A. J. Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast. Nature. 1987 Apr 2;326(6112):466–470. doi: 10.1038/326466a0. [DOI] [PubMed] [Google Scholar]
- Klar A. J. The mother-daughter mating type switching asymmetry of budding yeast is not conferred by the segregation of parental HO gene DNA strands. Genes Dev. 1987 Dec;1(10):1059–1064. doi: 10.1101/gad.1.10.1059. [DOI] [PubMed] [Google Scholar]
- Koshland D., Hartwell L. H. The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science. 1987 Dec 18;238(4834):1713–1716. doi: 10.1126/science.3317838. [DOI] [PubMed] [Google Scholar]
- Lark K. G., Consigli R. A., Minocha H. C. Segregation of sister chromatids in mammalian cells. Science. 1966 Dec 2;154(3753):1202–1205. doi: 10.1126/science.154.3753.1202. [DOI] [PubMed] [Google Scholar]
- Lark K. G. Nonrandom segregation of sister chromatids in Vicia faba and Triticum boeoticum. Proc Natl Acad Sci U S A. 1967 Jul;58(1):352–359. doi: 10.1073/pnas.58.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lark K. G. Sister Chromatid Segregation during Mitosis in Polyploid Wheat. Genetics. 1969 Jun;62(2):289–305. doi: 10.1093/genetics/62.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayron R., Wise D. Random distribution of centromere regions at mitosis in cultured cells of Muntiacus muntjak. Chromosoma. 1976 Mar 31;55(1):69–74. doi: 10.1007/BF00288328. [DOI] [PubMed] [Google Scholar]
- Morris V. B. Random segregation of sister chromatids in developing chick retinal cells demonstrated in vivo using the fluorescence plus Giemsa technique. Chromosoma. 1977 Mar 16;60(2):139–145. doi: 10.1007/BF00288461. [DOI] [PubMed] [Google Scholar]
- Mortimer R. K., Schild D., Contopoulou C. R., Kans J. A. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast. 1989 Sep-Oct;5(5):321–403. doi: 10.1002/yea.320050503. [DOI] [PubMed] [Google Scholar]
- Pickett-Heaps J. D., Tippit D. H., Porter K. R. Rethinking mitosis. Cell. 1982 Jul;29(3):729–744. doi: 10.1016/0092-8674(82)90435-4. [DOI] [PubMed] [Google Scholar]
- Rosenberger R. F., Kessel M. Nonrandom sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans. J Bacteriol. 1968 Oct;96(4):1208–1213. doi: 10.1128/jb.96.4.1208-1213.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sclafani R. A., Fangman W. L. Thymidine utilization by tut mutants and facile cloning of mutant alleles by plasmid conversion in S. cerevisiae. Genetics. 1986 Nov;114(3):753–767. doi: 10.1093/genetics/114.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sclafani R. A., Fangman W. L. Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5821–5825. doi: 10.1073/pnas.81.18.5821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speit G., Vogel W. Detection of bromodeoxyuridine incorporation in mammalian chromosomes by a bromodeoxyuridine antibody. II. Demonstration of sister chromatid exchanges. Chromosoma. 1986;94(2):103–106. doi: 10.1007/BF00286987. [DOI] [PubMed] [Google Scholar]
- Thomas J. H., Botstein D. A gene required for the separation of chromosomes on the spindle apparatus in yeast. Cell. 1986 Jan 17;44(1):65–76. doi: 10.1016/0092-8674(86)90485-x. [DOI] [PubMed] [Google Scholar]
- Wolff S., Perry P. Differential Giemsa staining of sister chromatids and the study of chromatid exchanges without autoradiography. Chromosoma. 1974;48(4):341–353. doi: 10.1007/BF00290991. [DOI] [PubMed] [Google Scholar]