Abstract
To gain insight into mechanisms of unequal homologous recombination in vivo, genes generated by homologous unequal crossovers in the human β-globin gene cluster were examined by nucleotide sequencing and hybridization experiments. The naturally occurring genes studied included one δ-β Lepore-Baltimore fusion gene, one δ -β Lepore-Hollandia fusion gene, 12 δ-β Lepore-Boston genes, one (A)γ-β fusion Kenya gene, one (A)γ-(G)γ fusion (the central gene of a triplication) and one (G)γ-(A)γ fusion. A comparison of the nucleotide sequences of three Lepore-Boston genes indicates that they were derived from at least two independent homologous but unequal crossover events, although the crossovers occurred within the same 58-bp region. Nine additional Lepore-Boston genes from individuals of various ethnic origins were shown, by hybridization to specific oligonucleotide probes, to have been generated by a crossover in the same region as the sequenced genes. Evidence for gene conversion accompanying a homologous unequal crossover event was found in only one case (although some of the single nucleotide differences observed in other genes in this study may be related to the crossover events in ways that we do not presently understand). Thus, as judged by this limited sample, concurrent gene conversions are not commonly associated with homologous but unequal exchange in humans in vivo. Classification of the recombinant chromosomes by their polymorphic restriction sites in the β-globin gene cluster indicated that the Lepore-Boston genes are found in at least six different haplotype backgrounds. Therefore the total number of independent examples in this study is at least 6, and at most 12. We have shown that in at least six cases of genes that have arisen by homologous but unequal crossing over in vivo, each event occurred in a relatively extensive region of uninterrupted identity between the parental genes. This preference cannot be explained by a mechanism whereby crossovers occur at random within misaligned related but not identical genes. In general, crossovers occur in regions that are among the largest available stretches of identity for a particular pair of mismatched genes. Our data are in agreement with those of other types of studies of homologous recombination, and support the idea that sequence identity, rather than general homology, is a critical factor in homologous recombination.
Full Text
The Full Text of this article is available as a PDF (3.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerman B. R., Fujiwara T. M., Lancaster G. A., Morgan K., Scriver C. R. Identification of deletion and triple alpha-globin gene haplotypes in the Montreal beta-thalassemia screening program: implications for genetic medicine. Am J Med Genet. 1990 May;36(1):76–84. doi: 10.1002/ajmg.1320360115. [DOI] [PubMed] [Google Scholar]
- Antonarakis S. E., Boehm C. D., Serjeant G. R., Theisen C. E., Dover G. J., Kazazian H. H., Jr Origin of the beta S-globin gene in blacks: the contribution of recurrent mutation or gene conversion or both. Proc Natl Acad Sci U S A. 1984 Feb;81(3):853–856. doi: 10.1073/pnas.81.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAGLIONI C. ABNORMAL HUMAN HEMOGLOBINS. X. A STUDY OF HEMOGLOBIN LEPORE BOSTON. Biochim Biophys Acta. 1965 Jan 4;97:37–46. doi: 10.1016/0304-4165(65)90267-9. [DOI] [PubMed] [Google Scholar]
- BAGLIONI C. The fusion of two peptide chains in hemoglobin Lepore and its interpretation as a genetic deletion. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1880–1886. doi: 10.1073/pnas.48.11.1880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baird M., Schreiner H., Driscoll C., Bank A. Localization of the site of recombination in formation of the Lepore Boston globin gene. J Clin Invest. 1981 Aug;68(2):560–564. doi: 10.1172/JCI110289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchi M. E., Radding C. M. Insertions, deletions and mismatches in heteroduplex DNA made by recA protein. Cell. 1983 Dec;35(2 Pt 1):511–520. doi: 10.1016/0092-8674(83)90185-x. [DOI] [PubMed] [Google Scholar]
- Boontrakoonpoontawee P., Svasti J., Fucharoen S., Winichagoon P. Identification of Hb Lepore-Washington-Boston in association with Hb E [beta 26(B8)Glu----Lys] in a Thai female. Hemoglobin. 1987;11(4):309–316. doi: 10.3109/03630268709042850. [DOI] [PubMed] [Google Scholar]
- Chakravarti A., Buetow K. H., Antonarakis S. E., Waber P. G., Boehm C. D., Kazazian H. H. Nonuniform recombination within the human beta-globin gene cluster. Am J Hum Genet. 1984 Nov;36(6):1239–1258. [PMC free article] [PubMed] [Google Scholar]
- Chebloune Y., Poncet D., Verdier G. S1-nuclease mapping of the genomic Lepore-Boston DNA demonstrates that the entire large intervening sequence of the fusion gene is of beta-type. Biochem Biophys Res Commun. 1984 Apr 16;120(1):116–123. doi: 10.1016/0006-291x(84)91421-9. [DOI] [PubMed] [Google Scholar]
- Chebloune Y., Verdier G. The delta-beta-crossing-over site in the fusion gene of the Lepore-Boston disease might be localized in a preferential recombination region. Acta Haematol. 1983;69(5):294–302. doi: 10.1159/000206910. [DOI] [PubMed] [Google Scholar]
- Clegg J. B., Weatherall D. J., Gilles H. M. Hereditary persistence of foetal haemoglobin associated with a gamma beta fusion variant, haemoglobin Kenya. Nat New Biol. 1973 Dec 12;246(154):184–186. doi: 10.1038/newbio246184a0. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobkin C., Clyne J., Metzenberg A., Bank A. Expression of a cloned Lepore globin gene. Blood. 1986 Jan;67(1):168–172. [PubMed] [Google Scholar]
- Dover G. J., Chang V. T., Boyer S. H., Serjeant G. R., Antonarakis S., Higgs D. R. The cellular basis for different fetal hemoglobin levels among sickle cell individuals with two, three, and four alpha-globin genes. Blood. 1987 Jan;69(1):341–344. [PubMed] [Google Scholar]
- Efremov G. D. Hemoglobins Lepore and anti-Lepore. Hemoglobin. 1978;2(3):197–233. doi: 10.3109/03630267809007068. [DOI] [PubMed] [Google Scholar]
- Efremov G. D., Rudivić R., Niazi G. A., Hunter E., Jr, Huisman T. H., Schroeder W. A. An individual with Hb-Lepore-Baltimore- delta beta-thalassaemia in a Yugoslavian family. Scand J Haematol. 1976 Feb;16(2):81–89. doi: 10.1111/j.1600-0609.1976.tb01122.x. [DOI] [PubMed] [Google Scholar]
- Fei Y. J., Lanclos K. D., Kutlar F., Walker E. L., 3rd, Huisman T. H. A chromosome with five gamma-globin genes. Blood. 1988 Aug;72(2):827–829. [PubMed] [Google Scholar]
- GERALD P. S., DIAMOND L. K. A new hereditary hemoglobinopathy (the Lepore trait) and its interaction with thalassemia trait. Blood. 1958 Sep;13(9):835–844. [PubMed] [Google Scholar]
- Gimferrer E., Baiget M., Darbre P. D., Lehmann H. Haemoglobin Lepore Boston in a Spanish family. Acta Haematol. 1976;56(4):234–240. doi: 10.1159/000207943. [DOI] [PubMed] [Google Scholar]
- Gitschier J., Wood W. I., Shuman M. A., Lawn R. M. Identification of a missense mutation in the factor VIII gene of a mild hemophiliac. Science. 1986 Jun 13;232(4756):1415–1416. doi: 10.1126/science.3012775. [DOI] [PubMed] [Google Scholar]
- Gomez-Pedrozo M., Hu W. S., Shen C. K. Recombinational resolution in primate cells of two homologous human DNA segments with a gradient of sequence divergence. Nucleic Acids Res. 1988 Dec 9;16(23):11237–11247. doi: 10.1093/nar/16.23.11237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goossens M., Dozy A. M., Embury S. H., Zachariades Z., Hadjiminas M. G., Stamatoyannopoulos G., Kan Y. W. Triplicated alpha-globin loci in humans. Proc Natl Acad Sci U S A. 1980 Jan;77(1):518–521. doi: 10.1073/pnas.77.1.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henni T., Morlé F., Lopez B., Colonna P., Godet J. Alpha-thalassemia haplotypes in the Algerian population. Hum Genet. 1987 Mar;75(3):272–276. doi: 10.1007/BF00281073. [DOI] [PubMed] [Google Scholar]
- Henthorn P. S., Mager D. L., Huisman T. H., Smithies O. A gene deletion ending within a complex array of repeated sequences 3' to the human beta-globin gene cluster. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5194–5198. doi: 10.1073/pnas.83.14.5194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgs D. R., Hill A. V., Bowden D. K., Weatherall D. J., Clegg J. B. Independent recombination events between the duplicated human alpha globin genes; implications for their concerted evolution. Nucleic Acids Res. 1984 Sep 25;12(18):6965–6977. doi: 10.1093/nar/12.18.6965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgs D. R., Old J. M., Pressley L., Clegg J. B., Weatherall D. J. A novel alpha-globin gene arrangement in man. Nature. 1980 Apr 17;284(5757):632–635. doi: 10.1038/284632a0. [DOI] [PubMed] [Google Scholar]
- Hill A. V., Bowden D. K., Weatherall D. J., Clegg J. B. Chromosomes with one, two, three, and four fetal globin genes: molecular and hematologic analysis. Blood. 1986 Jun;67(6):1611–1618. [PubMed] [Google Scholar]
- Kazazian H. H., Jr, Orkin S. H., Antonarakis S. E., Sexton J. P., Boehm C. D., Goff S. C., Waber P. G. Molecular characterization of seven beta-thalassemia mutations in Asian Indians. EMBO J. 1984 Mar;3(3):593–596. doi: 10.1002/j.1460-2075.1984.tb01853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kendall A. G., Ojwang P. J., Schroeder W. A., Huisman T. H. Hemoglobin Kenya, the product of a gamma-beta fusion gene: studies of the family. Am J Hum Genet. 1973 Sep;25(5):548–563. [PMC free article] [PubMed] [Google Scholar]
- Kim H. S., Smithies O. Recombinant fragment assay for gene targetting based on the polymerase chain reaction. Nucleic Acids Res. 1988 Sep 26;16(18):8887–8903. doi: 10.1093/nar/16.18.8887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura A., Ohta Y., Fukumaki Y., Takagi Y. A fusion gene in man: DNA sequence analysis of the abnormal globin gene of hemoglobin Miyada. Biochem Biophys Res Commun. 1984 Mar 30;119(3):968–974. doi: 10.1016/0006-291x(84)90868-4. [DOI] [PubMed] [Google Scholar]
- Kobori J. A., Strauss E., Minard K., Hood L. Molecular analysis of the hotspot of recombination in the murine major histocompatibility complex. Science. 1986 Oct 10;234(4773):173–179. doi: 10.1126/science.3018929. [DOI] [PubMed] [Google Scholar]
- Kulozik A. E., Wainscoat J. S., Serjeant G. R., Kar B. C., Al-Awamy B., Essan G. J., Falusi A. G., Haque S. K., Hilali A. M., Kate S. Geographical survey of beta S-globin gene haplotypes: evidence for an independent Asian origin of the sickle-cell mutation. Am J Hum Genet. 1986 Aug;39(2):239–244. [PMC free article] [PubMed] [Google Scholar]
- Lanclos K. D., Patterson J., Efremov G. D., Wong S. C., Villegas A., Ojwang P. J., Wilson J. B., Kutlar F., Huisman T. H. Characterization of chromosomes with hybrid genes for Hb Lepore-Washington, Hb Lepore-Baltimore, Hb P-Nilotic, and Hb Kenya. Hum Genet. 1987 Sep;77(1):40–45. doi: 10.1007/BF00284711. [DOI] [PubMed] [Google Scholar]
- Lehrman M. A., Goldstein J. L., Russell D. W., Brown M. S. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987 Mar 13;48(5):827–835. doi: 10.1016/0092-8674(87)90079-1. [DOI] [PubMed] [Google Scholar]
- Lie-Injo L. E., Herrera A. R., Kan Y. W. Two types of triplicated alpha-globin loci in humans. Nucleic Acids Res. 1981 Aug 11;9(15):3707–3717. doi: 10.1093/nar/9.15.3707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liskay R. M., Letsou A., Stachelek J. L. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 1987 Jan;115(1):161–167. doi: 10.1093/genetics/115.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J. Z., Gilman J. G., Cao Q., Bakioglu I., Huisman T. H. Four categories of gamma-globin gene triplications: DNA sequence comparison of low G gamma and high G gamma triplications. Blood. 1988 Aug;72(2):480–484. [PubMed] [Google Scholar]
- Liu J. Z., Harano T., Lanclos K. D., Huisman T. H. The beta-delta crossover leading to the beta delta hybrid gene of hemoglobin P-Nilotic is located within 54 base-pairs of the 5' end of exon 2 or between codons 31 and 50. Biochim Biophys Acta. 1987 Aug 25;909(3):208–212. doi: 10.1016/0167-4781(87)90079-0. [DOI] [PubMed] [Google Scholar]
- Lynch J., Tate V. E., Weatherall D. J., Fucharoen S., Tanphaichitr V. S., Isarangkura P., Seksarn P., Laosombat V., Kulapongs P., Wasi P. Molecular basis of beta-thalassemia in Thailand. Birth Defects Orig Artic Ser. 1987;23(5A):71–79. [PubMed] [Google Scholar]
- Lyons K. M., Stein J. H., Smithies O. Length polymorphisms in human proline-rich protein genes generated by intragenic unequal crossing over. Genetics. 1988 Sep;120(1):267–278. doi: 10.1093/genetics/120.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda N., McEvoy S. M., Harris H. F., Huisman T. H., Smithies O. Polymorphisms in the human haptoglobin gene cluster: chromosomes with multiple haptoglobin-related (Hpr) genes. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7395–7399. doi: 10.1073/pnas.83.19.7395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manning R. F., Gage L. P. Internal structure of the silk fibroin gene of Bombyx mori. II. Remarkable polymorphism of the organization of crystalline and amorphous coding sequences. J Biol Chem. 1980 Oct 10;255(19):9451–9457. [PubMed] [Google Scholar]
- Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
- Michelson A. M., Orkin S. H. Boundaries of gene conversion within the duplicated human alpha-globin genes. Concerted evolution by segmental recombination. J Biol Chem. 1983 Dec 25;258(24):15245–15254. [PubMed] [Google Scholar]
- Morlé L., Morlé F., Dorléac E., Baklouti F., Baudonnet C., Godet J., Delaunay J. The association of hemoglobin Knossos and hemoglobin Lepore in an Algerian patient. Hemoglobin. 1984;8(3):229–238. doi: 10.3109/03630268408996971. [DOI] [PubMed] [Google Scholar]
- Nakashima H., Fujiyama A., Kagiyama S., Imamura T. Genetic polymorphisms of gene conversion within the duplicated human alpha-globin loci. Hum Genet. 1990 May;84(6):568–570. doi: 10.1007/BF00210811. [DOI] [PubMed] [Google Scholar]
- Neitz J., Neitz M., Jacobs G. H. Analysis of fusion gene and encoded photopigment of colour-blind humans. Nature. 1989 Dec 7;342(6250):679–682. doi: 10.1038/342679a0. [DOI] [PubMed] [Google Scholar]
- Nute P. E., Wood W. G., Stamatoyannopoulos G., Olweny C., Failkow P. J. The Kenya form of hereditary persistence of fetal haemoglobin: structural studies and evidence for homogeneous distribution of haemoglobin F using fluorescent anti-haemoglobin F antibodies. Br J Haematol. 1976 Jan;32(1):55–63. doi: 10.1111/j.1365-2141.1976.tb01875.x. [DOI] [PubMed] [Google Scholar]
- Ojwang P. J., Nakatsuji T., Gardiner M. B., Reese A. L., Gilman J. G., Huisman T. H. Gene deletion as the molecular basis for the Kenya-G gamma-HPFH condition. Hemoglobin. 1983;7(2):115–123. doi: 10.3109/03630268309048641. [DOI] [PubMed] [Google Scholar]
- Okano Y., Wang T., Eisensmith R. C., Güttler F., Woo S. L. Recurrent mutation in the human phenylalanine hydroxylase gene. Am J Hum Genet. 1990 May;46(5):919–924. [PMC free article] [PubMed] [Google Scholar]
- Orkin S. H., Kazazian H. H., Jr, Antonarakis S. E., Goff S. C., Boehm C. D., Sexton J. P., Waber P. G., Giardina P. J. Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. Nature. 1982 Apr 15;296(5858):627–631. doi: 10.1038/296627a0. [DOI] [PubMed] [Google Scholar]
- Orr-Weaver T. L., Nicolas A., Szostak J. W. Gene conversion adjacent to regions of double-strand break repair. Mol Cell Biol. 1988 Dec;8(12):5292–5298. doi: 10.1128/mcb.8.12.5292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostertag W., Smith E. W. Hemoglobin-Lepore-Baltimore, a third type of a delta, beta crossover (delta 50, beta 86). Eur J Biochem. 1969 Sep;10(2):371–376. doi: 10.1111/j.1432-1033.1969.tb00700.x. [DOI] [PubMed] [Google Scholar]
- Pearson R. K., Fox M. S. Effects of DNA heterologies on bacteriophage lambda recombination. Genetics. 1988 Jan;118(1):13–19. doi: 10.1093/genetics/118.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen K., Devereux J., Wilson D. R., Sheldon E., Larkins B. A. Cloning and sequence analysis reveal structural variation among related zein genes in maize. Cell. 1982 Jul;29(3):1015–1026. doi: 10.1016/0092-8674(82)90465-2. [DOI] [PubMed] [Google Scholar]
- Phillips J. A., 3rd, Vik T. A., Scott A. F., Young K. E., Kazazian H. H., Jr, Smith K. D., Fairbanks V. F., Koenig H. M. Unequal crossing-over: a common basis of single alpha-globin genes in Asians and American blacks with hemoglobin-H disease. Blood. 1980 Jun;55(6):1066–1069. [PubMed] [Google Scholar]
- Poteete A. R., Volkert M. R. Activation of recF-dependent recombination in Escherichia coli by bacteriophage lambda- and P22-encoded functions. J Bacteriol. 1988 Sep;170(9):4379–4381. doi: 10.1128/jb.170.9.4379-4381.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powers P. A., Smithies O. Short gene conversions in the human fetal globin gene region: a by-product of chromosome pairing during meiosis? Genetics. 1986 Feb;112(2):343–358. doi: 10.1093/genetics/112.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossignol J. L., Paquette N., Nicolas A. Aberrant 4:4 asci, disparity in the direction of conversion, and frequencies of conversion in Ascobolus immersus. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1343–1352. doi: 10.1101/sqb.1979.043.01.153. [DOI] [PubMed] [Google Scholar]
- Rubnitz J., Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 1984 Nov;4(11):2253–2258. doi: 10.1128/mcb.4.11.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruley H. E., Fried M. Clustered illegitimate recombination events in mammalian cells involving very short sequence homologies. Nature. 1983 Jul 14;304(5922):181–184. doi: 10.1038/304181a0. [DOI] [PubMed] [Google Scholar]
- SMITHIES O. CHROMOSOMAL REARRANGEMENTS AND PROTEIN STRUCTURE. Cold Spring Harb Symp Quant Biol. 1964;29:309–319. doi: 10.1101/sqb.1964.029.01.033. [DOI] [PubMed] [Google Scholar]
- SMITHIES O., CONNELL G. E., DIXON G. H. Chromosomal rearrangements and the evolution of haptoglobin genes. Nature. 1962 Oct 20;196:232–236. doi: 10.1038/196232a0. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen S. H., Slightom J. L., Smithies O. A history of the human fetal globin gene duplication. Cell. 1981 Oct;26(2 Pt 2):191–203. doi: 10.1016/0092-8674(81)90302-0. [DOI] [PubMed] [Google Scholar]
- Shimasaki S., Iuchi I. Diversity of human gamma-globin gene loci including a quadruplicated arrangement. Blood. 1986 Mar;67(3):784–788. [PubMed] [Google Scholar]
- Singer B. S., Gold L., Gauss P., Doherty D. H. Determination of the amount of homology required for recombination in bacteriophage T4. Cell. 1982 Nov;31(1):25–33. doi: 10.1016/0092-8674(82)90401-9. [DOI] [PubMed] [Google Scholar]
- Slightom J. L., Blechl A. E., Smithies O. Human fetal G gamma- and A gamma-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell. 1980 Oct;21(3):627–638. doi: 10.1016/0092-8674(80)90426-2. [DOI] [PubMed] [Google Scholar]
- Slightom J. L., Chang L. Y., Koop B. F., Goodman M. Chimpanzee fetal G gamma and A gamma globin gene nucleotide sequences provide further evidence of gene conversions in hominine evolution. Mol Biol Evol. 1985 Sep;2(5):370–389. doi: 10.1093/oxfordjournals.molbev.a040357. [DOI] [PubMed] [Google Scholar]
- Slightom J. L., Theisen T. W., Koop B. F., Goodman M. Orangutan fetal globin genes. Nucleotide sequence reveal multiple gene conversions during hominid phylogeny. J Biol Chem. 1987 Jun 5;262(16):7472–7483. [PubMed] [Google Scholar]
- Stoeckert C. J., Jr, Collins F. S., Weissman S. M. Human fetal globin DNA sequences suggest novel conversion event. Nucleic Acids Res. 1984 Jun 11;12(11):4469–4479. doi: 10.1093/nar/12.11.4469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stolle C. A., Penny L. A., Ivory S., Forget B. G., Benz E. J., Jr Sequence analysis of the gamma-globin gene locus from a patient with the deletion form of hereditary persistence of fetal hemoglobin. Blood. 1990 Jan 15;75(2):499–504. [PubMed] [Google Scholar]
- Struhl K. Effect of deletion and insertion on double-strand-break repair in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Mar;7(3):1300–1303. doi: 10.1128/mcb.7.3.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sukumaran P. K., Nakatsuji T., Gardiner M. B., Reese A. L., Gilman J. G., Huisman T. H. Gamma thalassemia resulting from the deletion of a gamma-globin gene. Nucleic Acids Res. 1983 Jul 11;11(13):4635–4643. [PMC free article] [PubMed] [Google Scholar]
- Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
- Titus E. A., Hsia Y. E., Hunt J. A. Alpha-thalassemia screening reveals quadruple zeta-globin genes in a Laotian family. Hemoglobin. 1988;12(5-6):539–550. doi: 10.3109/03630268808991643. [DOI] [PubMed] [Google Scholar]
- Trent R. J., Bowden D. K., Old J. M., Wainscoat J. S., Clegg J. B., Weatherall D. J. A novel rearrangement of the human beta-like globin gene cluster. Nucleic Acids Res. 1981 Dec 21;9(24):6723–6733. doi: 10.1093/nar/9.24.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trent R. J., Mickleson K. N., Wilkinson T., Yakas J., Dixon M. W., Hill P. J., Kronenberg H. Globin genes in Polynesians have many rearrangements including a recently described gamma gamma gamma gamma/. Am J Hum Genet. 1986 Sep;39(3):350–360. [PMC free article] [PubMed] [Google Scholar]
- Triantaphyllidis C. D., Kouvatsi A., Kaplanoglou L. The genetic distances between the inhabitants of nine Mediterranean countries and the three major human races. Hum Hered. 1983;33(2):137–139. doi: 10.1159/000153364. [DOI] [PubMed] [Google Scholar]
- Vanin E. F., Henthorn P. S., Kioussis D., Grosveld F., Smithies O. Unexpected relationships between four large deletions in the human beta-globin gene cluster. Cell. 1983 Dec;35(3 Pt 2):701–709. doi: 10.1016/0092-8674(83)90103-4. [DOI] [PubMed] [Google Scholar]
- Waldman A. S., Liskay R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988 Dec;8(12):5350–5357. doi: 10.1128/mcb.8.12.5350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldman A. S., Liskay R. M. Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5340–5344. doi: 10.1073/pnas.84.15.5340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt V. M., Ingles C. J., Urdea M. S., Rutter W. J. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4768–4772. doi: 10.1073/pnas.82.14.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winichagoon P., Higgs D. R., Goodbourn S. E., Lamb J., Clegg J. B., Weatherall D. J. Multiple arrangements of the human embryonic zeta globin genes. Nucleic Acids Res. 1982 Oct 11;10(19):5853–5868. doi: 10.1093/nar/10.19.5853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood W. I., Gitschier J., Lasky L. A., Lawn R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1585–1588. doi: 10.1073/pnas.82.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziemer M. A., Swain W. F., Rutter W. J., Clements S., Ann D. K., Carlson D. M. Nucleotide sequence analysis of a proline-rich protein cDNA and peptide homologies of rat and human proline-rich proteins. J Biol Chem. 1984 Aug 25;259(16):10475–10480. [PubMed] [Google Scholar]
- Zimran A., Sorge J., Gross E., Kubitz M., West C., Beutler E. A glucocerebrosidase fusion gene in Gaucher disease. Implications for the molecular anatomy, pathogenesis, and diagnosis of this disorder. J Clin Invest. 1990 Jan;85(1):219–222. doi: 10.1172/JCI114415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Hazmi M. A. Haplotypes of alpha-globin-gene in the Saudi population--the triplicated gene (alpha alpha alpha anti 3.7/). Hum Hered. 1987;37(5):314–318. doi: 10.1159/000153723. [DOI] [PubMed] [Google Scholar]